### 8.14 Sulfonate Esters as Substrates in Nucleophilic Substitution

#### Leaving Groups

we have seen numerous examples of nucleophilic substitution in which X in RX is a halogen halogen is not the only possible leaving group though

#### Other RX compounds



Alkyl methanesulfonate (mesylate)

Alkyl *p*-toluenesulfonate (tosylate)

undergo same kinds of reactions as alkyl halides

#### Preparation

Tosylates are prepared by the reaction of alcohols with *p*-toluenesulfonyl chloride (usually in the presence of pyridine)



Tosylates undergo typical nucleophilic substitution reactions



The best leaving groups are weakly basic

## Table 8.8Approximate Relative Reactivity of Leaving Groups

| Leaving Group                                  | Relative        | Conjugate acid                     | $K_{\rm a}$ of         |  |
|------------------------------------------------|-----------------|------------------------------------|------------------------|--|
|                                                | Rate            | of leaving group                   | conj. acid             |  |
|                                                |                 |                                    |                        |  |
| F-                                             | 10-5            | HF                                 | 3.5 x 10 <sup>-4</sup> |  |
| CI                                             | 1               | HCI                                | 10 <sup>7</sup>        |  |
| Br-                                            | 10              | HBr                                | 10 <sup>9</sup>        |  |
| l-                                             | 10 <sup>2</sup> | HI                                 | 10 <sup>10</sup>       |  |
| H <sub>2</sub> O                               | 10 <sup>1</sup> | H <sub>3</sub> O+                  | 56                     |  |
| TsO-                                           | 10 <sup>5</sup> | TsOH                               | 600                    |  |
| CF <sub>3</sub> SO <sub>2</sub> O <sup>-</sup> | 10 <sup>8</sup> | CF <sub>3</sub> SO <sub>2</sub> OH | 10 <sup>6</sup>        |  |

## Table 8.8 Approximate Relative Reactivity of Leaving Groups

| Leaving Group                                                                           | Relative<br>Rate      | Conjugate acid<br>of leaving group | <i>K</i> <sub>a</sub> of<br>conj. acid |  |
|-----------------------------------------------------------------------------------------|-----------------------|------------------------------------|----------------------------------------|--|
| F-                                                                                      | 10 <sup>-5</sup>      | HF                                 | <b>3.5</b> x 10⁻⁴                      |  |
| Sulfonate esters are extremely good leaving groups; sulfonate ions are very weak bases. |                       |                                    |                                        |  |
| H <sub>2</sub> O                                                                        | 10<br>10 <sup>1</sup> | ин<br>Н <sub>а</sub> О+            | 56                                     |  |
| TsO-                                                                                    | 10 <sup>5</sup>       | TsOH                               | 600                                    |  |
| CF <sub>3</sub> SO <sub>2</sub> O <sup>-</sup>                                          | 10 <sup>8</sup>       | CF <sub>3</sub> SO <sub>2</sub> OH | 106                                    |  |

# Tosylates can be converted to alkyl halides



Tosylate is a better leaving group than bromide.

Tosylates allow control of stereochemistry

Preparation of tosylate does not affect any of the bonds to the stereogenic center, so configuration and optical purity of tosylate is the same as the alcohol from which it was formed.



Tosylates allow control of stereochemistry

Having a tosylate of known optical purity and absolute configuration then allows the preparation of other compounds of known configuration by  $S_N 2$  processes.



8.15 Looking Back: Reactions of Alcohols with Hydrogen Halides





Rearrangements can occur in the reaction of alcohols with hydrogen halides



Rearrangements can occur in the reaction of alcohols with hydrogen halides

