9.5 Acidity of Acetylene and Terminal Alkynes

Acidity of Hydrocarbons

In general, hydrocarbons are exceedingly weak acids

Compound	pK_a
HF	3.2
H ₂ O	16
NH ₃	36
H ₂ C=CH ₂	45
CH ₄	60

Acetylene

Acetylene is a weak acid, but not nearly as weak as alkanes or alkenes.

	Compound	р <i>К</i> а	
	HF	3.2	
нс≡сн	H ₂ O	16	- 26
	NH ₃	36	20
	$H_2C=CH_2$	45	
	CH ₄	60	

Carbon: Hybridization and Electronegativity

Electrons in an orbital with more s character are closer to the nucleus and more strongly held.

Sodium Acetylide

Objective:

Prepare a solution containing sodium acetylide

Will treatment of acetylene with NaOH be effective?

Sodium Acetylide

No. Hydroxide is not a strong enough base to deprotonate acetylene.

HO: + H
$$C \equiv CH$$
 \rightarrow HÖ \rightarrow H + : $C \equiv CH$ weaker acid stronger acid $pK_a = 26$ $pK_a = 16$

In acid-base reactions, the equilibrium lies to the side of the weaker acid.

Sodium Acetylide

Solution: Use a stronger base. Sodium amide is a stronger base than sodium hydroxide.

Ammonia is a weaker acid than acetylene. The position of equilibrium lies to the right.

9.6
Preparation of Alkynes
by
Alkylation of Acetylene and Terminal Alkynes

Preparation of Alkynes

There are two main methods for the preparation of alkynes:

Carbon-carbon bond formation alkylation of acetylene and terminal alkynes

Functional-group transformations elimination

Alkylation of Acetylene and Terminal Alkynes

Alkylation of Acetylene and Terminal Alkynes

$$H-C \equiv C: + R \xrightarrow{S_N 2} H-C \equiv C-R + :X$$

The alkylating agent is an alkyl halide, and the reaction is nucleophilic substitution.

The nucleophile is sodium acetylide or the sodium salt of a terminal (monosubstituted) alkyne.

Example: Alkylation of Acetylene

HC=CH
$$\xrightarrow{\text{NaNH}_2}$$
 HC=CNa $\xrightarrow{\text{NH}_3}$ CH₃CH₂CH₂CH₂Br

$$HC = C - CH_2CH_2CH_2CH_3$$

$$(70-77\%)$$

Example: Alkylation of a Terminal Alkyne

(CH₃)₂CHCH₂C
$$\equiv$$
CH
NaNH₂, NH₃

(CH₃)₂CHCH₂C \equiv CNa
CH₃Br
(CH₃)₂CHCH₂C \equiv C—CH₃
(81%)

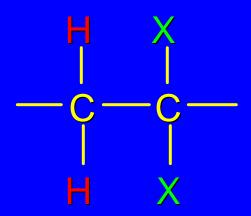
Example: Dialkylation of Acetylene

H—C
$$\equiv$$
C—H
1. NaNH₂, NH₃
2. CH₃CH₂Br
CH₃CH₂—C \equiv C—H
1. NaNH₂, NH₃
2. CH₃Br
CH₃CH₂—C \equiv C—CH₃
(81%)

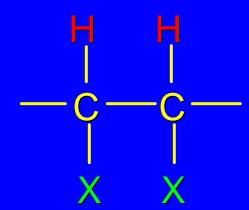
Limitation

Effective only with primary alkyl halides

Secondary and tertiary alkyl halides undergo elimination


Acetylide Ion as a Base

E2 predominates over S_N2 when alkyl halide is secondary or tertiary


$$H-C \equiv C + :X^{-}$$

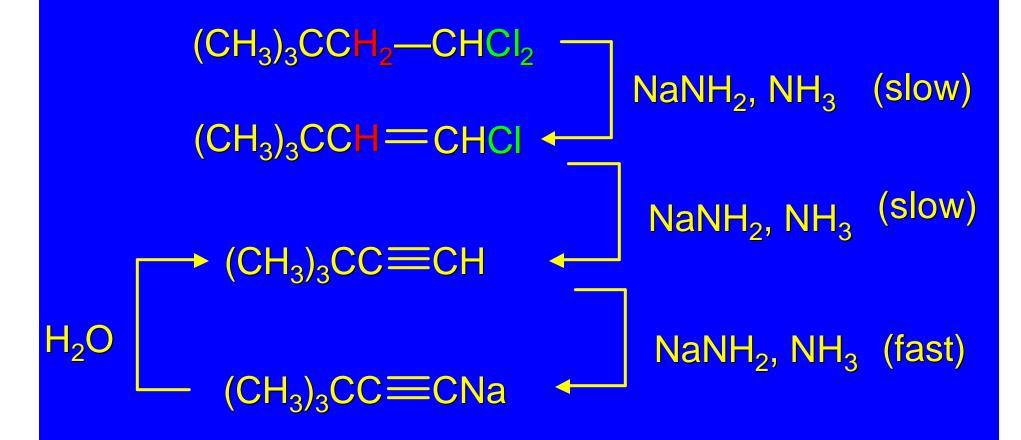
9.7 Preparation of Alkynes by Elimination Reactions

Preparation of Alkynes by "Double Dehydrohalogenation"

Geminal dihalide

Vicinal dihalide

The most frequent applications are in preparation of terminal alkynes.


Geminal dihalide Æ Alkyne

$$(CH_3)_3CCH_2-CHCI_2$$

1. $3NaNH_2$, NH_3

2. H_2O
 $(CH_3)_3CC=CH$
 $(56-60\%)$

Geminal dihalide Æ Alkyne

Vicinal dihalide Æ Alkyne