9.8 Reactions of Alkynes

Reactions of Alkynes

Acidity (Section 9.5) Hydrogenation (Section 9.9) Metal-Ammonia Reduction (Section 9.10) Addition of Hydrogen Halides (Section 9.11) Hydration (Section 9.12) Addition of Halogens (Section 9.13) Ozonolysis (Section 9.14) 9.9 Hydrogenation of Alkynes Hydrogenation of Alkynes

$$RC \equiv CR' + 2H_2 \xrightarrow{cat} RCH_2CH_2R'$$

$$catalyst = Pt, Pd, Ni, or Rh$$

alkene is an intermediate

Heats of Hydrogenation

 $CH_3CH_2C \equiv CH$ 292 kJ/mol $CH_3C \equiv CCH_3$ 275 kJ/mol

Alkyl groups stabilize triple bonds in the same way that they stabilize double bonds. Internal triple bonds are more stable than terminal ones. **Partial Hydrogenation**

Alkenes could be used to prepare alkenes if a catalyst were available that is active enough to catalyze the hydrogenation of alkynes, but not active enough for the hydrogenation of alkenes.

Lindlar Palladium

RCH=CHR'

There is a catalyst that will catalyze the hydrogenation of alkynes to alkenes, but not that of alkenes to alkanes.

cat

RCH₂CH₂R'

It is called the Lindlar catalyst and consists of palladium supported on $CaCO_3$, which has been poisoned with lead acetate and quinoline.

 H_2

cat

 $RC \equiv CR'$

syn-Hydrogenation occurs; cis alkenes are formed.

9.10 Metal-Ammonia Reduction of Alkynes

Alkynes Ø trans-Alkenes

Partial Reduction

Another way to convert alkynes to alkenes is by reduction with sodium (or lithium or potassium) in ammonia.

trans-Alkenes are formed.

Metal (Li, Na, K) is reducing agent; H₂ is not involved

four steps

- (1) electron transfer
- (2) proton transfer
- (3) electron transfer
- (4) proton transfer

Step (1): Transfer of an electron from the metal to the alkyne to give an anion radical.

Step (2) Transfer of a proton from the solvent (liquid ammonia) to the anion radical.

Step (3): Transfer of an electron from the metal to the alkenyl radical to give a carbanion.

Step (4) Transfer of a proton from the solvent (liquid ammonia) to the carbanion .

Problem 9.12

Suggest efficient syntheses of (*E*)- and (*Z*)-2heptene from propyne and any necessary organic or inorganic reagents.

9.11 Addition of Hydrogen Halides to Alkynes

Follows Markovnikov's Rule

Alkynes are slightly less reactive than alkenes

Termolecular Rate-Determining Step

Observed rate law: rate = k[alkyne][HX]²

Two Molar Equivalents of Hydrogen Halide

regioselectivity opposite to Markovnikov's rule

9.12 Hydration of Alkynes

Hydration of Alkynes

enols are regioisomers of ketones, and exist in equilibrium with them keto-enol equilibration is rapid in acidic media ketones are more stable than enols and predominate at equilibrium

Key Carbocation Intermediate

Carbocation is stabilized by electron delocalization (resonance)

Example of Alkyne Hydration

Regioselectivity

Markovnikov's rule followed in formation of enol

9.13 Addition of Halogens to Alkynes

9.14 Ozonolysis of Alkynes

gives two carboxylic acids by cleavage of triple bond

