12.12 Substituent Effects in Electrophilic Aromatic Substitution: Activating Substituents

Table 12.2

Classification of Substituents in Electrophilic Aromatic Substitution Reactions

Very strongly activating Strongly activating Activating **Standard of comparison is H** Deactivating Strongly deactivating Very strongly deactivating Generalizations

- 1. All activating substituents are ortho-para directors.
- 2. Halogen substituents are slightly deactivating but ortho-para directing.
- 3. Strongly deactivating substituents are meta directors.

Electron-Releasing Groups (ERGs)

are ortho-para directing and activating

ERGs include —R, —Ar, and —C=C

Electron-Releasing Groups (ERGs)

are ortho-para directing and strongly activating

ERGs such as —OH, and —OR are strongly activating

Nitration of Phenol

occurs about 1000 times faster than nitration of benzene

Bromination of Anisole

FeBr₃ catalyst not necessary

Oxygen Lone Pair Stabilizes Intermediate

all atoms have octets

Electron-Releasing Groups (ERGs)

ERGs with a lone pair on the atom directly attached to the ring are ortho-para directing and strongly activating

All of these are ortho-para directing and strongly to very strongly activating

Lone Pair Stabilizes Intermediates for ortho and para Substitution

comparable stabilization not possible for intermediate leading to meta substitution

12.13 Substituent Effects in Electrophilic Aromatic Substitution: Strongly Deactivating Substituents

ERGs Stabilize Intermediates for ortho and para Substitution

Electron-withdrawing Groups (EWGs) Destabilize Intermediates for ortho and para Substitution

 $-CF_3$ is a powerful EWG. It is strongly deactivating and meta directing

All of these are meta directing and strongly deactivating

Other EWGs Include:

All of these are meta directing and strongly deactivating

75-84%

Problem 12.14(a); page 468

62%

Bromination of Nitrobenzene

60-75%

12.14 Substituent Effects in Electrophilic Aromatic Substitution: Halogens

F, Cl, Br, and I are ortho-para directing, but deactivating

Nitration of Chlorobenzene

The rate of nitration of chlorobenzene is about 30 times slower than that of benzene.

Nitration of Toluene vs. Chlorobenzene

