13.21 Mass Spectrometry

Atom or molecule is hit by high-energy electron

Atom or molecule is hit by high-energy electron

electron is deflected but transfers much of its energy to the molecule

Atom or molecule is hit by high-energy electron

electron is deflected but transfers much of its energy to the molecule

This energy-rich species ejects an electron.

This energy-rich species ejects an electron.

 e^{-}

forming a positively charged, odd-electron species called the *molecular ion*

Molecular ion passes between poles of a magnet and is deflected by magnetic field

+

amount of deflection depends on mass-to-charge ratio

highest m/z deflected least

lowest m/z deflected most

If the only ion that is present is the molecular ion, mass spectrometry provides a way to measure the molecular weight of a compound and is often used for this purpose.

However, the molecular ion often fragments to a mixture of species of lower m/z.

The molecular ion dissociates to a cation and a radical.

The molecular ion dissociates to a cation and a radical.

Usually several fragmentation pathways are available and a mixture of ions is produced.

mixture of ions of different mass gives separate peak for each m/z

intensity of peak proportional to percentage of each ion of different mass in mixture

separation of peaks depends on relative mass

+

╋

÷

+

mixture of ions of different mass gives separate peak for each m/z

intensity of peak proportional to percentage of each atom of different mass in mixture

separation of peaks depends on relative mass

Some molecules undergo very little fragmentation

Benzene is an example. The major peak corresponds to the molecular ion.

Relative intensity

Alkanes undergo extensive fragmentation

m/z

Propylbenzene fragments mostly at the benzylic position

m/z

13.22 Molecular Formula as a Clue to Structure

Molecular Formulas

Knowing that the molecular formula of a substance is C_7H_{16} tells us immediately that is an alkane because it corresponds to C_nH_{2n+2} C_7H_{14} lacks two hydrogens of an alkane, therefore contains either a ring or a double bond

Index of Hydrogen Deficiency

relates molecular formulas to multiple bonds and rings

index of hydrogen deficiency =

1 (molecular formula of alkane – 2 molecular formula of compound)

Example 1

index of hydrogen deficiency

 $=\frac{1}{2}$ (molecular formula of alkane – molecular formula of compound)

$$= \frac{1}{2} (C_7 H_{16} - C_7 H_{14})$$

$$=\frac{1}{2}(2)=1$$

Therefore, one ring or one double bond.

Example 2

$$= \frac{1}{2} (C_7 H_{16} - C_7 H_{12})$$

$$=\frac{1}{2}(4)=2$$

Therefore, two rings, one triple bond, two double bonds, or one double bond + one ring. Oxygen has no effect

$CH_3(CH_2)_5CH_2OH$ (1-heptanol, $C_7H_{16}O$) has same number of H atoms as heptane

index of hydrogen deficiency =

$$\frac{1}{2} (C_7 H_{16} - C_7 H_{16} O) = 0$$

no rings or double bonds

Oxygen has no effect

Cyclopropyl acetate

index of hydrogen deficiency =

$$\frac{1}{2} (C_5 H_{12} - C_5 H_8 O_2) = 2$$

one ring plus one double bond

If halogen is present

Treat a halogen as if it were hydrogen.

same index of hydrogen deficiency as for C₃H₆

Rings versus Multiple Bonds

Index of hydrogen deficiency tells us the sum of rings plus multiple bonds.

Catalytic hydrogenation tells us how many multiple bonds there are.