15.6 Reactions of Alcohols: A Review and a Preview

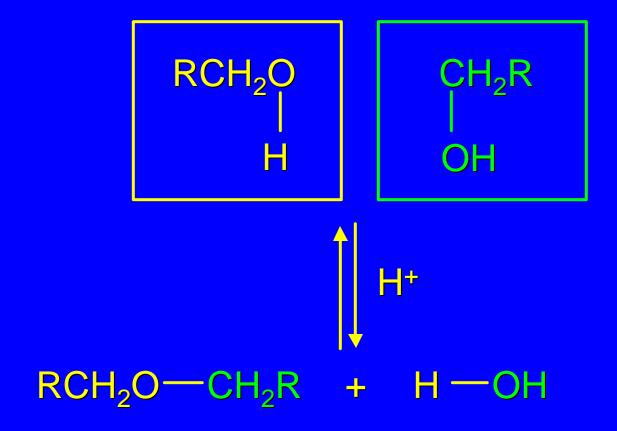
Table 15.2 Review of Reactions of Alcohols

reaction with hydrogen halides
reaction with thionyl chloride
reaction with phosphorous tribromide
acid-catalyzed dehydration
conversion to *p*-toluenesulfonate esters

New Reactions of Alcohols in This Chapter

conversion to ethers

esterification


esters of inorganic acids

oxidation

cleavage of vicinal diols

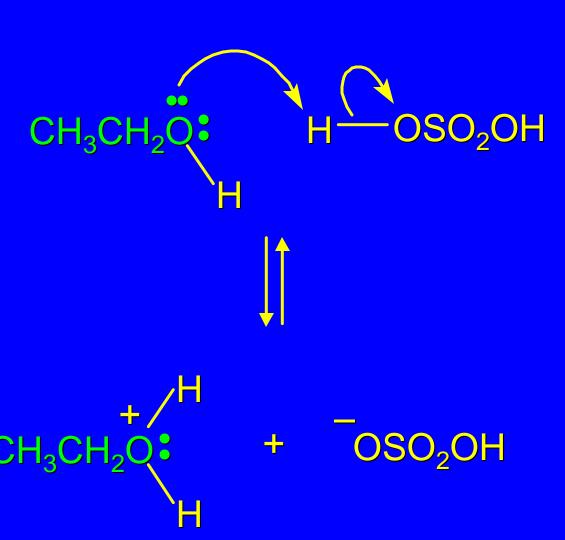
15.7 Conversion of Alcohols to Ethers

Conversion of Alcohols to Ethers

acid-catalyzed referred to as a "condensation" equilibrium; most favorable for primary alcohols

Example

2CH₃CH₂CH₂CH₂OH


H₂SO₄, 130°C

CH₃CH₂CH₂CH₂CH₂CH₂CH₂CH₃

(60%)

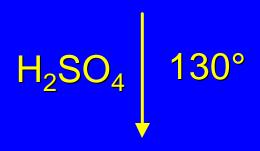
Figure 15.2 Mechanism of Formation of Diethyl Ether

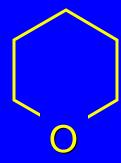
Step 1:



Figure 15.2 Mechanism of Formation of Diethyl Ether

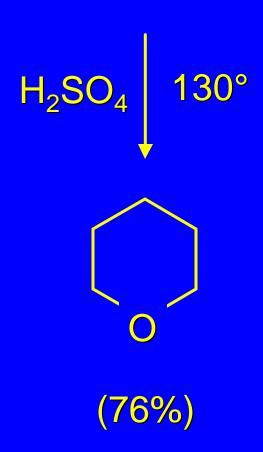
Step 2:

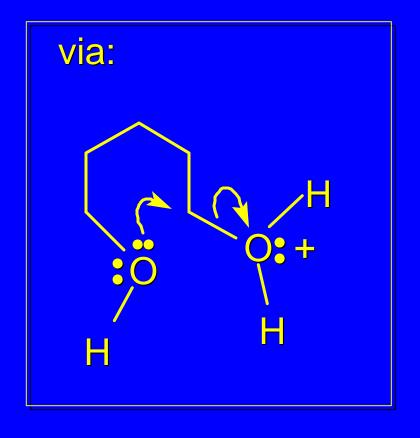

Figure 15.2 Mechanism of Formation of Diethyl Ether


Step 3:

Intramolecular Analog

HOCH₂CH₂CH₂CH₂CH₂OH




reaction normally works well only for 5- and 6-membered rings

(76%)

Intramolecular Analog

HOCH₂CH₂CH₂CH₂CH₂OH

15.8 Esterification

Esterification

ROH + R'COH
$$\longrightarrow$$
 R'COR + H_2O

condensation

Fischer esterification

acid catalyzed

reversible

Example of Fischer Esterification

COH +
$$CH_3OH$$

0.1 mol

0.6 mol

 H_2SO_4

COCH₃ + H_2O

70% yield based on benzoic acid

Reaction of Alcohols with Acyl Chlorides

high yields

not reversible when carried out in presence of pyridine

Example

Reaction of Alcohols with Acid Anhydrides

analogous to reaction with acyl chlorides

Example

pyridine

O

C₆H₅CH₂CH₂OCCF₃

(83%)

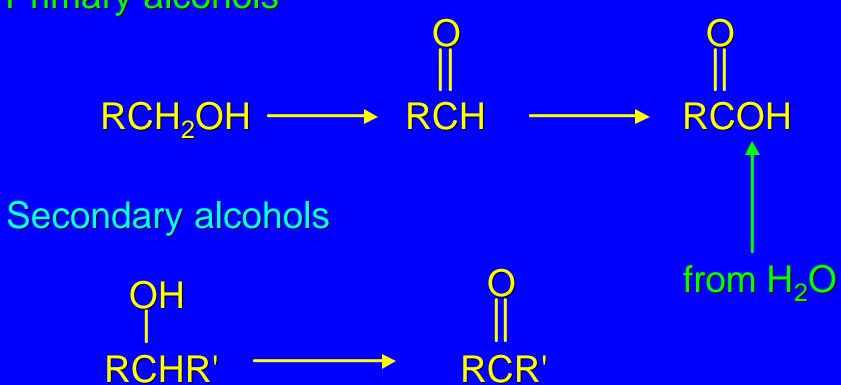
15.9 Esters of Inorganic Acids

Esters of Inorganic Acids

EWG is an electron-withdrawing group

$$(HO)_2SO_2$$

Esters of Inorganic Acids


EWG is an electron-withdrawing group

$$HONO_2$$
 $(HO)_2SO_2$ $(HO)_3P - O$
 $CH_3OH + HONO_2$ $CH_3ONO_2 + H_2O$
 $(66-80\%)$

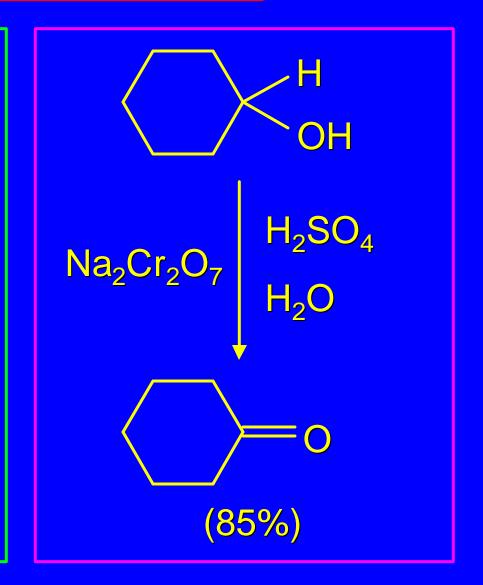
15.10 Oxidation of Alcohols

Oxidation of Alcohols

Primary alcohols

Typical Oxidizing Agents

Aqueous solution


Mn(VII) Cr(VI)

H₂CrO₄ H₂Cr₂O₇ KMnO₄

Aqueous Cr(VI)

FCH₂CH₂CH₂CH₂OH

Aqueous Cr(VI)

Nonaqueous Sources of Cr(VI)

All are used in CH₂Cl₂

Pyridinium dichromate (PDC)

$$(C_5H_5NH^+)_2 Cr_2O_7^{2-}$$

Pyridinium chlorochromate (PCC)

Example: Oxidation of a primary alcohol with PCC

Example: Oxidation of a primary alcohol with PDC

$$(CH_3)_3C$$
 \longrightarrow CH_2OH

PDC CH_2CI_2
 $(CH_3)_3C$ \longrightarrow CH
 (94%)

Mechanism

involves formation and elimination of a chromate ester

Mechanism

involves formation and elimination of a chromate ester

...

15.11 Biological Oxidation of Alcohols

Enzyme-catalyzed

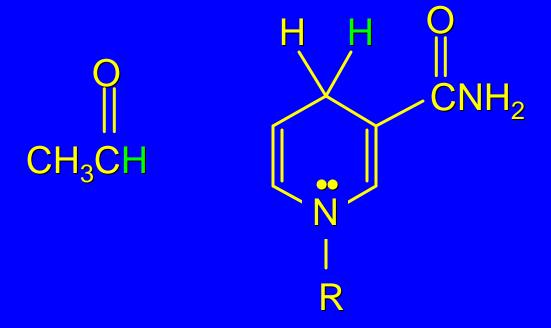

$$CH_3CH=O + NAD-H + H^+$$

Figure 15.3 Structure of NAD+

nicotinamide adenine dinucleotide (oxidized form)

Enzyme-catalyzed

Enzyme-catalyzed

15.12 Oxidative Cleavage of Vicinal Diols

Cleavage of Vicinal Diols by Periodic Acid

$$C = C + C = C$$

HO

OH

Cleavage of Vicinal Diols by Periodic Acid

Cyclic Diols are Cleaved