Chapter 17 Aldehydes and Ketones

17.1 Nomenclature

Nomenclature of Aldehydes

4,4-dimethylpentanal

5-hexenal

нсснсн

2-phenylpropanedial

Nomenclature of Aldehydes

-C

-H

when named as a substituent

formyl group

when named as a suffix

carbaldehyde carboxaldehyde

3-hexanone

4-methyl-2-pentanone

4-methylcyclohexanone

Functional Class Nomenclature of Ketones

ethyl propyl ketone

benzyl ethyl ketone

$$\bigcup_{H_2C=CHCCH=CH_2}^{O}$$

divinyl ketone

17.2 Structure and Bonding: The Carbonyl Group

Structure of Formaldehyde

planar

bond angles: close to 120° C=O bond distance: 122 pm The Carbonyl Group

very polar double bond

1-butene

propanal

dipole moment = 0.3D

dipole moment = 2.5D

Carbonyl group of a ketone is more stable than that of an aldehyde

heat of combustion 2475 kJ/mol

2442 kJ/mol

Alkyl groups stabilize carbonyl groups the same way they stabilize carbon-carbon double bonds, carbocations, and free radicals. Spread is greater for aldehydes and ketones than for alkenes

2442 kJ/mol

Heats of combustion of C₄H₈ isomeric alkenes CH₃CH₂CH=CH₂ 2717 kJ/mol cis-CH₃CH=CHCH₃ 2710 kJ/mol trans-CH₃CH=CHCH₃ 2707 kJ/mol

(CH₃)₂C=CH₂ 2700 kJ/mol

Resonance Description of Carbonyl Group

nucleophiles attack carbon; electrophiles attack oxygen

Bonding in Formaldehyde

Carbon and oxygen are *sp*² hybridized

Bonding in Formaldehyde

The half-filled p orbitals on carbon and oxygen overlap to form a π bond

17.3 Physical Properties

Aldehydes and ketones have higher boiling than alkenes, but lower boiling points than alcohols.

boiling point

17.4 Sources of Aldehydes and Ketones

Many aldehydes and ketones occur naturally

2-heptanone (component of alarm pheromone of bees)

Many aldehydes and ketones occur naturally

trans-2-hexenal (alarm pheromone of myrmicine ant)

Many aldehydes and ketones occur naturally

citral (from lemon grass oil)

Synthesis of Aldehydes and Ketones

A number of reactions already studied provide efficient synthetic routes to aldehydes and ketones.

from alkenes ozonolysis from alkynes hydration (via enol) from arenes **Friedel-Crafts acylation** from alcohols oxidation

What about..?

aldehydes from carboxylic acids

What about..?

ketones from aldehydes

