17.5 Reactions of Aldehydes and Ketones: A Review and a Preview #### Reactions of Aldehydes and Ketones Already covered in earlier chapters: reduction of C=O to CH₂ Clemmensen reduction Wolff-Kishner reduction reduction of C=O to CHOH addition of Grignard and organolithium reagents 17.6 Principles of Nucleophilic Addition to Carbonyl Groups: Hydration of Aldehydes and Ketones ## Hydration of Aldehydes and Ketones $$C=0$$: $$H_2O$$ $$C=0$$: $$H_2O$$ #### Substituent Effects on Hydration Equilibria $$R$$ $+$ H_2O $+$ R C R' OH C R' OH compared to H electronic: alkyl groups stabilize reactants steric: alkyl groups crowd product # **Equilibrium Constants for Hydration** | C=O | hydrate | K | % | |---------------------------------------|--|----------|-------| | CH ₂ =O | CH ₂ (OH) ₂ | 41 | 99.96 | | CH ₃ CH=O | CH ₃ CH(OH) ₂ | 0.018 | 50 | | (CH ₃) ₃ CCH=O | (CH ₃) ₃ CCH(OH) ₂ | 0.0041 | 19 | | (CH ₃) ₂ C=O | (CH ₃) ₂ C(OH) ₂ | 0.000025 | 0.14 | ### When does equilibrium favor hydrate? when carbonyl group is destabilized - alkyl groups stabilize C=O - electron-withdrawing groups destabilize C=O #### Substituent Effects on Hydration Equilibria #### Mechanism of Hydration (base) # Step 1: #### Mechanism of Hydration (base) # Step 2: ## Mechanism of Hydration (acid) ## Step 1: ## Mechanism of Hydration (acid) Step 2: #### Mechanism of Hydration (acid) # Step 3: ## Example $$CI \longrightarrow CI \longrightarrow CI \longrightarrow CI \longrightarrow CHCN$$ $$CI \longrightarrow CH \longrightarrow CI \longrightarrow CHCN$$ $$CI \longrightarrow CHCN$$ 2,4-Dichlorobenzaldehyde cyanohydrin (100%) #### Example CH₃CCH₃ Then $$H_2SO_4$$ OH CH₃CCH₃ CH₃CCH₃ CN (77-78%) Acetone cyanohydrin is used in the synthesis of methacrylonitrile (see problem 17.6).