17.5 Reactions of Aldehydes and Ketones:

A Review and a Preview

Reactions of Aldehydes and Ketones

Already covered in earlier chapters:

reduction of C=O to CH₂

Clemmensen reduction

Wolff-Kishner reduction

reduction of C=O to CHOH

addition of Grignard and organolithium reagents

17.6
Principles of Nucleophilic
Addition to Carbonyl Groups:
Hydration of Aldehydes and
Ketones

Hydration of Aldehydes and Ketones

$$C=0$$
:
$$H_2O$$

$$C=0$$
:
$$H_2O$$

Substituent Effects on Hydration Equilibria

$$R$$
 $+$ H_2O $+$ R C R' OH C R' OH

compared to H

electronic: alkyl groups stabilize

reactants

steric: alkyl groups crowd

product

Equilibrium Constants for Hydration

C=O	hydrate	K	%
CH ₂ =O	CH ₂ (OH) ₂	41	99.96
CH ₃ CH=O	CH ₃ CH(OH) ₂	0.018	50
(CH ₃) ₃ CCH=O	(CH ₃) ₃ CCH(OH) ₂	0.0041	19
(CH ₃) ₂ C=O	(CH ₃) ₂ C(OH) ₂	0.000025	0.14

When does equilibrium favor hydrate?

when carbonyl group is destabilized

- alkyl groups stabilize C=O
- electron-withdrawing groups destabilize C=O

Substituent Effects on Hydration Equilibria

Mechanism of Hydration (base)

Step 1:

Mechanism of Hydration (base)

Step 2:

Mechanism of Hydration (acid)

Step 1:

Mechanism of Hydration (acid)

Step 2:

Mechanism of Hydration (acid)

Step 3:

Example

$$CI \longrightarrow CI \longrightarrow CI \longrightarrow CI \longrightarrow CHCN$$

$$CI \longrightarrow CH \longrightarrow CI \longrightarrow CHCN$$

$$CI \longrightarrow CHCN$$

2,4-Dichlorobenzaldehyde cyanohydrin (100%)

Example

CH₃CCH₃

Then
$$H_2SO_4$$

OH

CH₃CCH₃

CH₃CCH₃

CN

(77-78%)

Acetone cyanohydrin is used in the synthesis of methacrylonitrile (see problem 17.6).