17.8 Acetal Formation

Some reactions of aldehydes and ketones progress beyond the nucleophilic addition stage

Acetal formation

Imine formation

Enamine formation

Compounds related to imines

The Wittig reaction

Recall Hydration of Aldehydes and Ketones

Alcohols Under Analogous Reaction with Aldehydes and Ketones

Hemiacetal reacts further in acid to yield an acetal

Example

$$O$$

$$CH + 2CH_3CH_2OH$$

$$HCI$$

$$CH(OCH_2CH_3)_2 + H_2O$$

Benzaldehyde diethyl acetal (66%)

Diols Form Cyclic Acetals

In general:

Position of equilibrium is usually unfavorable for acetal formation from ketones.

Important exception:

Cyclic acetals can be prepared from ketones.

Example

$$C_6H_5CH_2CCH_3$$
 + $HOCH_2CH_2OH$

benzene

 p -toluenesulfonic acid

 H_2C
 C_1
 C_2
 C_3
 $C_6H_5CH_2$
 $C_6H_5CH_2$
 C_6H_3

Mechanism of Acetal Formation

First stage is analogous to hydration and leads to hemiacetal

acid-catalyzed nucleophilic addition of alcohol to C=O

Mechanism of Acetal Formation

Second stage is hemiacetal-to-acetal conversion involves carbocation chemistry

Carbocation is stabilized by delocalization of unshared electron pair of oxygen

Hydrolysis of Acetals

$$R - C - R' + H_2O \longrightarrow R' + 2R"OH$$

$$OR"$$

$$R - C - R' + H_2O \longrightarrow R'$$

reverse of acetal formation; hemiacetal is intermediate

application:

mechanism:

aldehydes and ketones can be "protected" as acetals.

17.9 Acetals as Protecting Groups

Example

The conversion shown cannot be carried out directly...

because the carbonyl group and the carbanion are incompatible functional groups.

Strategy

- 1) protect C=O2) alkylate3) restore C=O

Example: Protect

$$CH_3CCH_2CECH$$
 + $HOCH_2CH_2OH$
 $benzene$
 p -toluenesulfonic acid
 H_2C CH_2
 O O
 CH_2CH_2CECH

Example: Alkylate

Example: Deprotect

$$H_2C$$
 CH_2 H_2O H_2O CH_3 $CH_2CH_2C\equiv CCH_3$

HOCH₂CH₂OH +
$$CH_3$$
CCH₂CH₂C = CCH_3 (96%)