Section 17.17 Spectroscopic Analysis of Aldehydes and Ketones ## Infrared Spectroscopy Presence of a C=O group is readily apparent in infrared spectrum C=O stretching gives an intense absorption at 1710-1750 cm-1 In addition to peak for C=O, aldehydes give two weak peaks near 2720 and 2820 nm for H—C=O ### Figure 17.13 Infrared Spectrum of Butanal #### ¹H NMR Aldehydes: H—C=O proton is at very low field (δ 9-10 ppm). Methyl ketones: CH_3 singlet near δ 2 ppm. Figure 17.14 ### ¹³C NMR Carbonyl carbon is at extremely low field-near δ 200 ppm Intensity of carbonyl carbon is usually weak # *Figure 17.16* #### **UV-VIS** Aldehydes and ketones have two bands in the UV region: $p \varnothing p^*$ and $n \varnothing p^*$ $p \varnothing p^*$: excitation of a bonding p electron to an antibonding p * orbital $p \varnothing p^*$: excitation of a nonbonding electron on oxygen to an antibonding p * orbital ## **UV-VIS** H₃C $$p \varnothing p^* \quad \lambda_{\text{max}} \quad 187 \text{ nm}$$ $n \varnothing p^* \quad \lambda_{\text{max}} \quad 270 \text{ nm}$ H₃C ## Mass Spectrometry Molecular ion fragments to give an acyl cation