18.6 Base-Catalyzed Enolization: Enolate Anions

$$R_2C=CR'$$

enolate of β -diketone is stabilized; negative charge is shared by both oxygens

18.7 The Haloform Reaction

The Haloform Reaction

Under basic conditions, halogenation of a methyl ketone often leads to carbon-carbon bond cleavage.

Such cleavage is called the haloform reaction because chloroform, bromoform, or iodoform is one of the products.

Example

$$(CH_3)_3CCCH_3$$
 Br_2 , NaOH, H₂O
 $(CH_3)_3CCONa + CHBr_3$
 H^+
 $(CH_3)_3CCOH (71-74\%)$

The Haloform Reaction

The haloform reaction is sometimes used as a method for preparing carboxylic acids, but works well only when a single enolate can form.

$$(CH_3)_3CCCH_3$$
 $ArCCH_3$ RCH_2CCH_3 Yes no

First stage is substitution of all available α hydrogens by halogen

Formation of the trihalomethyl ketone is followed by its hydroxide-induced cleavage

HÖ:
$$\frac{1}{1}$$
 + RC - CX₃ - RC - CX₃ HO: $\frac{1}{1}$ + RC - $\frac{1}{1}$ + $\frac{1}{1}$ CX₃

18.8 Some Chemical and Stereochemical Consequences of Enolization

Hydrogen-Deuterium Exchange

$$H$$
 $+$ $4D_2O$ $+$ $4DOH$

Stereochemical Consequences of Enolization

Enol is achiral

Enol is achiral

Results of Rate Studies

Equal rates for:
racemization
H-D exchange
bromination
iodination

Enol is intermediate and its formation is rate-determining