18.11Effects of Conjugation in α,β -Unsaturated Aldehydes and Ketones

Relative Stability

aldehydes and ketones that contain a carboncarbon double bond are more stable when the double bond is conjugated with the carbonyl group than when it is not

compounds of this type are referred to as α , β unsaturated aldehydes and ketones

Resonance Description

Properties

 α , β -Unsaturated aldehydes and ketones are more polar than simple aldehydes and ketones.

 α , β -Unsaturated aldehydes and ketones contain two possible sites for nucleophiles to attack

carbonyl carbon

β-carbon

Properties

 α , β -Unsaturated aldehydes and ketones are more polar than simple aldehydes and ketones.

 α , β -Unsaturated aldehydes and ketones contain two possible sites for nucleophiles to attack

carbonyl carbon

β-carbon

Dipole Moments

 $\mu = 2.7 D$ Butanal

 $\mu = 3.7 D$

trans-2-Butenal

greater separation of positive and negative charge

18.12

Conjugate Addition to α,β-Unsaturated Carbonyl Compounds

Nucleophilic Addition to a,b-Unsaturated Aldehydes and Ketones

1,2-addition (direct addition)
nucleophile attacks carbon of C=O
1,4-addition (conjugate addition)
nucleophile attacks β-carbon

Kinetic versus Thermodynamic Control

attack is faster at C=O

attack at β -carbon gives the more stable product

formed faster major product under conditions of kinetic control (i.e. when addition is not readily reversible)

 $-\gamma$

keto form is isolated product of 1,4-addition is more stable than 1,2-addition product

H - Y

1,4-addition

1,2-Addition

observed with strongly basic nucleophiles **Grignard reagents** LiAIH₄ **NaBH**₄ Sodium acetylide strongly basic nucleophiles add irreversibly

1,4-Addition

observed with weakly basic nucleophiles cyanide ion (CN⁻) thiolate ions (RS⁻) ammonia and amines azide ion (N_3^-) weakly basic nucleophiles add reversibly

18.13

Addition of Carbanions to α,β-Unsaturated Carbonyl Compounds: The Michael Reaction

Michael Addition

Stabilized carbanions, such as those derived from β -diketones undergo conjugate addition to α , β -unsaturated ketones.

Michael Addition

The Michael reaction is a useful method for forming carbon-carbon bonds.

It is also useful in that the product of the reaction can undergo an intramolecular aldol condensation to form a six-membered ring. One such application is called the Robinson annulation.

not isolated; dehydrates under reaction conditions

18.14

Conjugate Addition of Organocopper Reagents to α , β -Unsaturated Carbonyl Compounds

Addition of Organocopper Reagents to a,b-Unsaturated Aldehydes and Ketones

The main use of organocopper reagents is to form carbon-carbon bonds by conjugate addition to α , β -unsaturated ketones.

18.15 Alkylation of Enolate Anions

Enolate lons in S_N2 Reactions

Enolate ions are nucleophiles and react with alkyl halides.

However, alkylation of simple enolates does not work well.

Enolates derived from β -diketones can be alkylated efficiently.

