19.6 Substituents and Acid Strength standard of comparison is acetic acid (X = H) $$K_a = 1.8 \times 10^{-5}$$ p $K_a = 4.7$ $$X$$ — CH_2COH $$X \qquad K_a \qquad pK_a$$ $$H \qquad 1.8 \times 10^{-5} \qquad 4.7$$ $$CH_3 \qquad 1.3 \times 10^{-5} \qquad 4.9$$ $$CH_3(CH_2)_5 \qquad 1.3 \times 10^{-5} \qquad 4.9$$ alkyl substituents have negligible effect $$X$$ K_a PK_a PK_a H 1.8×10^{-5} 4.7 F 2.5×10^{-3} 2.6 CI 1.4×10^{-3} 2.9 electronegative substituents increase acidity electronegative substituents withdraw electrons from carboxyl group; increase *K* for loss of H⁺ $$X$$ — CH_2COH X K_a PK_a PK_a H 1.8×10^{-5} 1.4×10^{-3} 2.9 $CICH_2$ 1.0×10^{-4} 4.0 $CICH_2CH_2$ 3.0×10^{-5} 4.5 effect of electronegative substituent decreases as number of bonds between X and carboxyl group increases # 19.7 Ionization of Substituted Benzoic Acids #### Hybridization Effect O $$K_a$$ p K_a p K_a COH 6.3 x 10⁻⁵ 4.2 H₂C=CH-COH 5.5 x 10⁻⁵ 4.3 HC=C-COH 1.4 x 10⁻² 1.8 sp^2 -hybridized carbon is more electron-withdrawing than sp^3 , and sp is more electron-withdrawing than sp^2 #### Table 19.3 Ionization of Substituted Benzoic Acids effect is small unless X is electronegative; effect is largest for ortho substituent nk | | | ρN_a | | |-------------------|-------|------------|------| | Substituent | ortho | meta | para | | Н | 4.2 | 4.2 | 4.2 | | CH ₃ | 3.9 | 4.3 | 4.4 | | F | 3.3 | 3.9 | 4.1 | | CI | 2.9 | 3.8 | 4.0 | | CH ₃ O | 4.1 | 4.1 | 4.5 | | NO ₂ | 2.2 | 3.5 | 3.4 | | | | | | ## 19.8 Dicarboxylic Acids #### Dicarboxylic Acids one carboxyl group acts as an electronwithdrawing group toward the other; effect decreases with increasing separation $$CO_2 + H_2O \longrightarrow HOCOH$$ 99.7% 0.3% $$CO_2 + H_2O \longrightarrow HOCOH \longrightarrow H^+ + HOCO^-$$ $$CO_2 + H_2O \longrightarrow HOCOH \longrightarrow H^+ + HOCO^-$$ overall K for these two steps = 4.3×10^{-7} CO₂ is major species present in a solution of "carbonic acid" in acidic media Second ionization constant: $$K_a = 5.6 \times 10^{-11}$$ # 19.10 Sources of Carboxylic Acids #### Synthesis of Carboxylic Acids: Review side-chain oxidation of alkylbenzenes (Section 11.13) oxidation of primary alcohols (Section 15.10) oxidation of aldehydes (Section 17.15) # 19.11 Synthesis of Carboxylic Acids by the Carboxylation of Grignard Reagents #### Carboxylation of Grignard Reagents one more carbon atom than the starting halide #### Carboxylation of Grignard Reagents #### Example: Alkyl Halide Mg, diethyl ether - 2. CO₂ - 3. H₃O⁺ CH₃CHCH₂CH₃ | CO₂H (76-86%) #### Example: Aryl Halide # 19.12 Synthesis of Carboxylic Acids by the Preparation and Hydrolysis of Nitriles #### Preparation and Hydrolysis of Nitriles RX $$: \overline{C} = N$$: RC=N: H_3O^+ RCOH heat S_{N^2} $+ NH_4^+$ converts an alkyl halide to a carboxylic acid having one more carbon atom than the starting halide limitation is that the halide must be reactive toward substitution by S_N2 mechanism #### Example $$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$ #### Example: Dicarboxylic Acid BrCH₂CH₂CH₂Br NaCN $$H_2$$ O NCCH₂CH₂CH₂CN (77-86%) H_2 O, HCI heat O HOCCH₂CH₂CH₂COH (83-85%) #### via Cyanohydrin