19.6 Substituents and Acid Strength

standard of comparison is acetic acid (X = H)

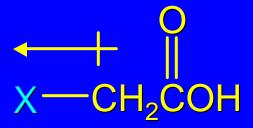
$$K_a = 1.8 \times 10^{-5}$$

p $K_a = 4.7$

$$X$$
— CH_2COH

$$X \qquad K_a \qquad pK_a$$

$$H \qquad 1.8 \times 10^{-5} \qquad 4.7$$


$$CH_3 \qquad 1.3 \times 10^{-5} \qquad 4.9$$

$$CH_3(CH_2)_5 \qquad 1.3 \times 10^{-5} \qquad 4.9$$

alkyl substituents have negligible effect

$$X$$
 K_a PK_a PK_a H 1.8×10^{-5} 4.7 F 2.5×10^{-3} 2.6 CI 1.4×10^{-3} 2.9

electronegative substituents increase acidity

electronegative substituents withdraw electrons from carboxyl group; increase *K* for loss of H⁺

$$X$$
— CH_2COH
 X
 K_a
 PK_a
 PK_a
 H
 1.8×10^{-5}
 1.4×10^{-3}
 2.9
 $CICH_2$
 1.0×10^{-4}
 4.0
 $CICH_2CH_2$
 3.0×10^{-5}
 4.5

effect of electronegative substituent decreases as number of bonds between X and carboxyl group increases

19.7 Ionization of Substituted Benzoic Acids

Hybridization Effect


O
$$K_a$$
 p K_a p K_a
COH 6.3 x 10⁻⁵ 4.2

H₂C=CH-COH 5.5 x 10⁻⁵ 4.3

HC=C-COH 1.4 x 10⁻² 1.8

 sp^2 -hybridized carbon is more electron-withdrawing than sp^3 , and sp is more electron-withdrawing than sp^2

Table 19.3 Ionization of Substituted Benzoic Acids

effect is small unless X is electronegative; effect is largest for ortho substituent

nk

		ρN_a	
Substituent	ortho	meta	para
Н	4.2	4.2	4.2
CH ₃	3.9	4.3	4.4
F	3.3	3.9	4.1
CI	2.9	3.8	4.0
CH ₃ O	4.1	4.1	4.5
NO ₂	2.2	3.5	3.4

19.8 Dicarboxylic Acids

Dicarboxylic Acids

one carboxyl group acts as an electronwithdrawing group toward the other; effect decreases with increasing separation

$$CO_2 + H_2O \longrightarrow HOCOH$$
99.7%
0.3%

$$CO_2 + H_2O \longrightarrow HOCOH \longrightarrow H^+ + HOCO^-$$

$$CO_2 + H_2O \longrightarrow HOCOH \longrightarrow H^+ + HOCO^-$$

overall K for these two steps = 4.3×10^{-7}

CO₂ is major species present in a solution of "carbonic acid" in acidic media

Second ionization constant:

$$K_a = 5.6 \times 10^{-11}$$

19.10 Sources of Carboxylic Acids

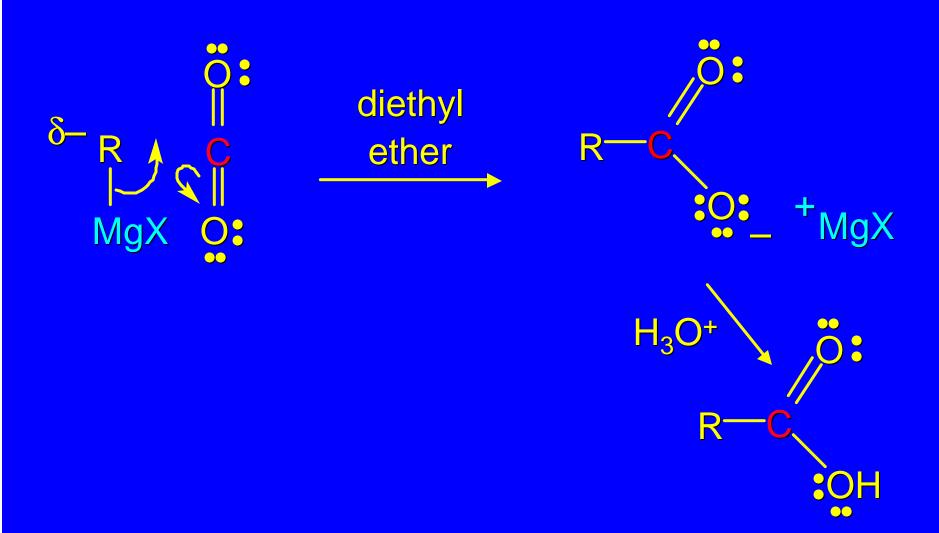
Synthesis of Carboxylic Acids: Review

side-chain oxidation of alkylbenzenes (Section 11.13)

oxidation of primary alcohols (Section 15.10)

oxidation of aldehydes (Section 17.15)

19.11 Synthesis of Carboxylic Acids by the Carboxylation of Grignard Reagents

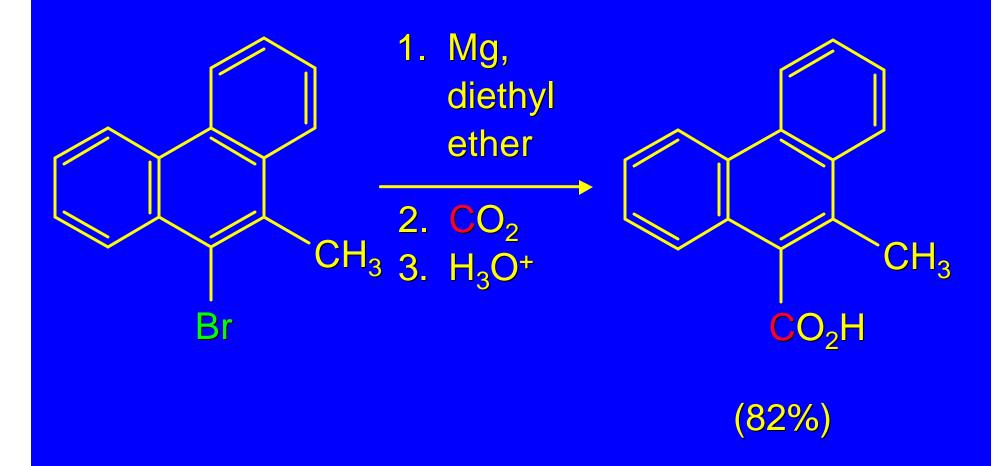

Carboxylation of Grignard Reagents

one more carbon atom

than the starting halide

Carboxylation of Grignard Reagents

Example: Alkyl Halide


 Mg, diethyl ether

- 2. CO₂
- 3. H₃O⁺

CH₃CHCH₂CH₃ | CO₂H

(76-86%)

Example: Aryl Halide

19.12 Synthesis of Carboxylic Acids by the Preparation and Hydrolysis of Nitriles

Preparation and Hydrolysis of Nitriles

RX
$$: \overline{C} = N$$
:

RC=N: H_3O^+
RCOH

heat

 S_{N^2}
 $+ NH_4^+$

converts an alkyl halide to a carboxylic acid having one more carbon atom than the starting halide

limitation is that the halide must be reactive toward substitution by S_N2 mechanism

Example

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

Example: Dicarboxylic Acid

BrCH₂CH₂CH₂Br
NaCN
$$H_2$$
O
NCCH₂CH₂CH₂CN (77-86%)
 H_2 O, HCI heat
O HOCCH₂CH₂CH₂COH (83-85%)

via Cyanohydrin