Chapter 22 Amines

## 22.1

# Amine Nomenclature

## **Classification of Amines**

Alkylamine N attached to alkyl group Arylamine N attached to aryl group Primary, secondary, or tertiary determined by number of carbon atoms directly attached to nitrogen

## Nomenclature of Primary Alkylamines (RNH<sub>2</sub>)

**Two IUPAC styles** 

1) analogous to alcohols: replace -e ending by -anamine

2) name alkyl group and attach -*amine* as a suffix

Examples: some primary alkylamines

(RNH<sub>2</sub>: one carbon directly attached to N)

CH<sub>3</sub>CH<sub>2</sub>NH<sub>2</sub>

ethylamine or ethanamine



cyclohexylamine or cyclohexanamine

CH<sub>3</sub>CHCH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub> NH<sub>2</sub>

1-methylbutylamine or2-pentanamine

## Nomenclature of Primary Arylamines (ArNH<sub>2</sub>)

Name as derivatives of aniline.

## Examples: some primary arylamines

## (ArNH<sub>2</sub>: one carbon directly attached to N)



#### *p*-fluoroaniline

5-bromo-2-ethylaniline

Amino groups as substituents

amino groups rank below OH groups and higher oxidation states of carbon in such cases name the amino group as a substituent

HOCH<sub>2</sub>CH<sub>2</sub>NH<sub>2</sub>



2-aminoethanol

*p*-aminobenzaldehyde

## Secondary and Tertiary Amines

Name as *N*-substituted derivatives of parent primary amine.

(N is a locant-it is not alphabetized, but is treated the same way as a numerical locant)

Parent amine is one with longest carbon chain.



CH<sub>3</sub>NHCH<sub>2</sub>CH<sub>3</sub> NHCH<sub>2</sub>CH<sub>3</sub>

C

 $NO_2$ 

CH<sub>3</sub>

CH<sub>3</sub>

N-methylethylamine

## 4-chloro-N-ethyl-3-nitroaniline

N,N-dimethylcycloheptylamine

#### Ammonium Salts

A nitrogen with four substituents is positively charged and is named as a derivative of *ammonium* ion  $(NH_4^+)$ .



### Ammonium Salts

When all four atoms attached to N are carbon, the ion is called a *quaternary ammonium* ion and salts that contain it are called *quaternary ammonium* salts.



benzyltrimethylammonium iodide

## 22.2

# Structure and Bonding



# Alkylamines



Most prominent feature is high electrostatic potential at nitrogen. Reactivity of nitrogen lone pair dominates properties of amines.

Compare geometry at N of methylamine, aniline, and formamide.





Pyramidal geometry at *sp*<sup>3</sup>-hybridized N in methylamine.

Planar geometry at *sp*<sup>2</sup>-hybridized N in formamide.

# Compare geometry at N of methylamine, aniline, and formamide.



Pyramidal geometry at *sp*<sup>3</sup>-hybridized N in methylamine.

Planar geometry at *sp*<sup>2</sup>-hybridized N in formamide.

Angle that the C—N bond makes with bisector of H—N—H angle is a measure of geometry at N.



Note: this is not the same as the H—N—H bond angle

Angle that the C—N bond makes with bisector of H—N—H angle is a measure of geometry at N.



Geometry at N in aniline is pyramidal; closer to methylamine than to formamide.



Hybridization of N in aniline lies between  $sp^3$  and  $sp^2$ .

Lone pair of N can be delocalized into ring best if N is  $sp^2$  and lone pair is in a p orbital.

Lone pair bound most strongly by N if pair is in an  $sp^3$  orbital of N, rather than *p*.

Actual hybridization is a compromise that maximizes binding of lone pair.



#### Electrostatic Potential Maps of Aniline





Nonplanar geometry at N. Region of highest negative potential is at N. Planar geometry at N. High negative potential shared by N and ring.

Figure 22.3 (page 862)

# 22.3 Physical Properties

#### **Physical Properties**

Amines are more polar and have higher boiling points than alkanes; but are less polar and have lower boiling points than alcohols.

## CH<sub>3</sub>CH<sub>2</sub>CH<sub>3</sub> CH<sub>3</sub>CH<sub>2</sub>NH<sub>2</sub> CH<sub>3</sub>CH<sub>2</sub>OH

| dipole         |       |       |       |
|----------------|-------|-------|-------|
| moment (µ):    | 0 D   | 1.2 D | 1.7 D |
| boiling point: | -42°C | 17°C  | 78°C  |

**Physical Properties** 

CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>NH<sub>2</sub> CH<sub>3</sub>CH<sub>2</sub>NHCH<sub>3</sub> (CH<sub>3</sub>)<sub>3</sub>N boiling 50°C 34°C 3°C point:

Boiling points of isomeric amines decrease in going from primary to secondary to tertiary amines.

Primary amines have two hydrogens on N capable of being involved in intermolecular hydrogen bonding. Secondary amines have one. Tertiary amines cannot be involved in intermolecular hydrogen bonds.