22.4

Measures of Amine Basicity

Measures of Basicity

The basicity of amines may be measured by:

- 1) *K*_b
- 2) p*K*_b
- 3) K_a of conjugate acid
- 4) pK_a of conjugate acid

Basicity Constant (K_b) and pK_b

 $K_{\rm b}$ is the equilibrium constant for the reaction:

 $R_{3}N: + H \stackrel{\bullet}{\longrightarrow} H \stackrel{\bullet}{\longrightarrow} R_{3}N - H + \stackrel{\bullet}{:} \stackrel{\bullet}{O}H$

 $K_{b} = \frac{[R_{3}NH^{+}][HO^{-}]}{[R_{3}N]}$ and $pK_{b} = -\log K_{b}$

K_a and pK_a of Conjugate Acid

 $K_{\rm a}$ is the equilibrium constant for the dissociation of the conjugate acid of the amine:

 $\begin{array}{c} \stackrel{+}{R_3N} \longrightarrow H \quad \longleftarrow \quad R_3N : + H^+ \\ \\ K_a = \frac{[R_3N][H^+]}{[R_3NH^+]} \\ \\ \text{and} \quad pK_a = -\log K_a \end{array}$

Relationships between acidity and basicity constants

 $K_{\rm a} K_{\rm b} = 10^{-14}$

 $pK_a + pK_b = 14$

22.5 Basicity of Amines

Effect of Structure on Basicity

1. Alkylamines are slightly stronger bases than ammonia.

Table 22.1 (page 866)Basicity of Amines in Aqueous Solution

Amine	Conj. Acid	рК _а	
NH ₃	NH ₄ +	9.3	
CH ₃ CH ₂ NH ₂	CH ₃ CH ₂ NH ₃ +	10.8	

Table 22.1 (page 866)Basicity of Amines in Aqueous Solution

Amine	Conj. Acid	рК _а	
NH ₃ CH ₃ CH ₂ NH ₂	NH ₄ +	9.3 10.8	
	CH ₃ CH ₂ NH ₃ +		

 $CH_3CH_2NH_3^+$ is a weaker acid than NH_4^+ ; therefore, $CH_3CH_2NH_2$ is a stronger base than NH_3 .

Effect of Structure on Basicity

- 1. Alkylamines are slightly stronger bases than ammonia.
- 2. Alkylamines differ very little in basicity.

Table 22.1 (page 866)Basicity of Amines in Aqueous Solution

Amine	Conj. Acid	рК _а
NH ₃	NH ₄ +	9.3
CH ₃ CH ₂ NH ₂	CH ₃ CH ₂ NH ₃ +	10.8
(CH ₃ CH ₂) ₂ NH	(CH ₃ CH ₂) ₂ NH ₂ +	11.1
(CH ₃ CH ₂) ₃ N	(CH ₃ CH ₂) ₃ NH+	10.8

Notice that the difference separating a primary, secondary, and tertiary amine is only 0.3 pK units.

Effect of Structure on Basicity

- 1. Alkylamines are slightly stronger bases than ammonia.
- 2. Alkylamines differ very little in basicity.
- 3. Arylamines are much weaker bases than ammonia.

Table 22.1 (page 866)Basicity of Amines in Aqueous Solution

Amine	Conj. Acid	рК _а
NH ₃	NH ₄ +	9.3
CH ₃ CH ₂ NH ₂	CH ₃ CH ₂ NH ₃ +	10.8
(CH ₃ CH ₂) ₂ NH	(CH ₃ CH ₂) ₂ NH ₂ +	11.1
(CH ₃ CH ₂) ₃ N	(CH ₃ CH ₂) ₃ NH ⁺	10.8
$C_6H_5NH_2$	C ₆ H ₅ NH ₃ +	4.6

Decreased basicity of arylamines

Decreased basicity of arylamines

Aniline (reactant) is stabilized by conjugation of nitrogen lone pair with ring π system. This stabilization is lost on protonation. Decreased basicity of arylamines

Increasing delocalization makes diphenylamine a weaker base than aniline, and triphenylamine a weaker base than diphenylamine.

 $C_6H_5NH_2$ (C_6H_5)₂NH (C_6H_5)₃N 3.8 x 10⁻¹⁰ 6 x 10⁻¹⁴ ~10⁻¹⁹

 $K_{\rm b}$

Effect of Substituents on Basicity of Arylamines

1. Alkyl groups on the ring increase basicity, but only slightly (less than 1 pK unit).

Basicity of Arylamines

Effect of Substituents on Basicity of Arylamines

- 1. Alkyl groups on the ring increase basicity, but only slightly (less than 1 pK unit).
- 2. Electron withdrawing groups, especially ortho and/or para to amine group, decrease basicity and can have a large effect.

Basicity of Arylamines

p-Nitroaniline

Lone pair on amine nitrogen is conjugated with *p*-nitro group—more delocalized than in aniline itself. Delocalization lost on protonation. Effect is Cumulative

Aniline is 3800 times more basic than *p*-nitroaniline. Aniline is ~1,000,000,000 times more basic than 2,4-dinitroaniline. Heterocyclic Amines

is more basic than

piperidine $K_{\rm b} = 1.6 \times 10^{-3}$ (an alkylamine)

pyridine $K_b = 1.4 \times 10^{-9}$ (resembles an arylamine in basicity)

00

Heterocyclic Amines

is more basic than

imidazole $K_{\rm b} = 1 \times 10^{-7}$ pyridine $K_{\rm b} = 1.4 \times 10^{-9}$

Imidazole

Which nitrogen is protonated in imidazole?

Imidazole

Which nitrogen is protonated in imidazole?

Protonation in the direction shown gives a stabilized ion.

22.6

Tetraalkylammonium Salts as Phase-Transfer Catalysts

Phase-Transfer Catalysis

Phase-transfer agents promote the solubility of ionic substances in nonpolar solvents. They transfer the ionic substance from an aqueous phase to a non-aqueous one.

Phase-transfer agents increase the rates of reactions involving anions. The anion is relatively unsolvated and very reactive in nonpolar media compared to water or alcohols.

Phase-Transfer Catalysis

Methyltrioctylammonium chloride

Phase-Transfer Catalysis

Quaternary ammonium salts are phase-transfer catalysts. They are soluble in nonpolar solvents.

Benzyltriethylammonium chloride

Example

The S_N2 reaction of sodium cyanide with butyl bromide occurs much faster when benzyl-triethylammonium chloride is present than when it is not.

 $\begin{array}{rcl} CH_{3}CH_{2}CH_{2}CH_{2}Br & + & NaCN \\ & & \downarrow \end{array} benzyltriethylammonium chloride \\ CH_{3}CH_{2}CH_{2}CH_{2}CN & + & NaBr \end{array}$

(aqueous)

(aqueous)

Mechanism

Mechanism

 $\underbrace{\mathsf{CH}_{2}\mathsf{CH}_{3}}_{\mathsf{CH}_{2}\mathsf{CH}_{3}} \underbrace{\mathsf{CH}_{2}\mathsf{CH}_{3}}_{\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{3}$

(in butyl bromide)

