22.16 Nitrosation of Alkylamines

Nitrite Ion, Nitrous Acid, and Nitrosyl Cation

Nitrosyl Cation and Nitrosation

Nitrosyl Cation and Nitrosation

Nitrosation of Secondary Alkylamines

Example

$$(CH_3)_2NH$$
 $(CH_3)_2NH$
 $(CH_3)_2N$
 $(C$

Some N-Nitroso Amines

 $(CH_3)_2N-N=O$

N-nitrosodimethylamine (leather tanning)

N-nitrosopyrrolidine (nitrite-cured bacon)

N-nitrosonornicotine (tobacco smoke)

analogous to nitrosation of secondary amines to this point

this species reacts further

nitrosation of a primary alkylamine gives an alkyl diazonium ion process is called diazotization

Alkyl Diazonium Ions

alkyl diazonium ions readily lose N₂ to give carbocations

Example: Nitrosation of 1,1-Dimethylpropylamine

There is no useful chemistry associated with the nitrosation of tertiary alkylamines.

22.17 Nitrosation of Arylamines

Nitrosation of Tertiary Arylamines

reaction that occurs is electrophilic aromatic substitution

Nitrosation of N-Alkylarylamines

similar to secondary alkylamines; gives *N*-nitroso amines

NaNO₂, HCI,

$$H_2O$$
, 10°C

N=O
NCH₃

(87-93%)

gives aryl diazonium ions

aryl diazonium ions are much more stable than alkyl diazonium ions

most aryl diazonium ions are stable under the conditions of their formation (0-10°C)

gives aryl diazonium ions

aryl diazonium ions are much more stable than alkyl diazonium ions

most aryl diazonium ions are stable under the conditions of their formation (0-10°C)

$$RN = N \xrightarrow{\text{fast}} R^{+} + N_{2}$$

$$ArN = N \xrightarrow{\text{slow}} Ar^{+} + N_{2}$$

Example:

$$(CH_3)_2CH \longrightarrow NH_2$$

$$NaNO_2, H_2SO_4$$

$$H_2O, 0-5°C$$

$$(CH_3)_2CH \longrightarrow N \equiv N \ HSO_4^-$$

Synthetic Origin of Aryl Diazonium Salts

22.18 Synthetic Transformations of Aryl Diazonium Salts

Transformations of Aryl Diazonium Salts

Preparation of Phenols

hydrolysis of a diazonium salt

Example

$$(CH_3)_2CH$$

1. NaNO₂, H₂SO₄
H₂O, 0-5°C

2. H₂O, heat

 $(CH_3)_2CH$

OH

 (73%)

Transformations of Aryl Diazonium Salts

Preparation of Aryl Iodides

reaction of an aryl diazonium salt with potassium iodide

$$Ar - N = N$$
 KI
 $Ar - I$

Example

1. NaNO₂, HCl H₂O, 0-5°C

2. KI, room temp.

(72-83%)

Transformations of Aryl Diazonium Salts

Preparation of Aryl Fluorides

$$Ar \longrightarrow F$$

$$Ar \longrightarrow N = N$$

heat the tetrafluoroborate salt of a diazonium ion; process is called the Schiemann reaction

Example

Transformations of Aryl Diazonium Salts

Preparation of Aryl Chlorides and Bromides

aryl chlorides and aryl bromides are prepared by heating a diazonium salt with copper(I) chloride or bromide

substitutions of diazonium salts that use copper(I) halides are called *Sandmeyer reactions*

1. NaNO₂, HCl, H₂O, 0-5°C

2. CuCl, heat

(68-71%)

1. NaNO₂, HBr, H₂O, 0-10°C

2. CuBr, heat

(89-95%)

Transformations of Aryl Diazonium Salts

Preparation of Aryl Nitriles

$$Ar -CN$$
 $Ar -N = N$

aryl nitriles are prepared by heating a diazonium salt with copper(I) cyanide this is another type of Sandmeyer reaction

1. NaNO₂, HCl, H₂O, 0°C

2. CuCN, heat

(64-70%)

Transformations of Aryl Diazonium Salts

Transformations of Aryl Diazonium Salts

hypophosphorous acid (H₃PO₂) reduces diazonium salts; ethanol does the same thing this is called *reductive deamination*

Value of Diazonium Salts

- allows introduction of substituents such as OH, F, I, and CN on the ring
- 2) allows preparation of otherwise difficultly accessible substitution patterns

22.19
Azo Coupling

Azo Coupling

Diazonium salts are weak electrophiles. React with strongly activated aromatic compounds by electrophilic aromatic substitution.

Azo Coupling

Diazonium salts are weak electrophiles.

React with strongly activated aromatic compounds by electrophilic aromatic substitution.

$$Ar \longrightarrow N = N + Ar' \longrightarrow Ar \longrightarrow N = N \longrightarrow Ar'$$
an azo compound

Ar' must bear a strongly electron-releasing group such as OH, OR, or NR₂.

$$OH + C_6H_5N \equiv N + C_6H_5$$

$$OH + N = NC_6H_5$$