24.4 Acidity of Phenols

most characteristic property of phenols is their acidity

Compare

Phenols are converted to phenoxide ions in aqueous base

stronger acid

weaker acid

24.5
Substituent Effects
on the
Acidity of Phenols

Electron-releasing groups have little or no effect

 K_a : 1 x 10⁻¹⁰

5 x 10⁻¹¹

6 x 10⁻¹¹

Electron-withdrawing groups increase acidity

 K_a : 1 x 10⁻¹⁰

4 x 10⁻⁹

7 x 10⁻⁸

Effect of electron-withdrawing groups is most pronounced at ortho and para positions

Effect of strong electron-withdrawing groups is cumulative

OH OH NO₂
$$O_2N$$
 NO₂ NO_2 NO_2 NO_2 NO_2 $A \times 10^{-8}$ 1×10^{-4} $A \times 10^{-1}$

Resonance Depiction