# 24.6 Sources of Phenols

Phenol is an important industrial chemical.

Major use is in phenolic resins for adhesives and plastics.

Annual U.S. production is about 4 billion pounds per year.



#### Laboratory Synthesis of Phenols

## from arylamines via diazonium ions



# 24.7 Naturally Occurring Phenols

Many phenols occur naturally

### Example: Thymol

$$CH_3$$
  $\longrightarrow$   $CH(CH_3)_2$ 

Thymol (major constituent of oil of thyme)

## Example: 2,5-Dichlorophenol

2,5-Dichlorophenol
(from defensive secretion of a species of grasshopper)

# 24.8 Reactions of Phenols: Electrophilic Aromatic Substitution

Hydroxyl group strongly activates the ring toward electrophilic aromatic substitution

#### Electrophilic Aromatic Substitution in Phenols

Halogenation

**Nitration** 

**Nitrosation** 

**Sulfonation** 

Friedel-Crafts Alkylation

**Friedel-Crafts Acylation** 

#### Halogenation

monohalogenation in nonpolar solvent (1,2-dichloroethane)

#### Halogenation

$$OH$$
 $+ 3Br_2$ 
 $+ 3Br_2$ 

multiple halogenation in polar solvent (water)

#### Electrophilic Aromatic Substitution in Phenols

Halogenation

**Nitration** 

**Nitrosation** 

Sulfonation

Friedel-Crafts Alkylation

Friedel-Crafts Acylation

#### **Nitration**



OH group controls regiochemistry

(73-77%)

#### Electrophilic Aromatic Substitution in Phenols

Halogenation

**Nitration** 

**Nitrosation** 

Sulfonation

Friedel-Crafts Alkylation

Friedel-Crafts Acylation

#### **Nitrosation**

$$\begin{array}{c|c}
 & \text{OH} & \text{NaNO}_2 \\
\hline
 & \text{H}_2\text{SO}_4, \text{H}_2\text{O} \\
\hline
 & \text{O}^\circ\text{C}
\end{array}$$
(99%)

only strongly activated rings undergo nitrosation when treated with nitrous acid

#### Electrophilic Aromatic Substitution in Phenols

Halogenation

**Nitration** 

**Nitrosation** 

**Sulfonation** 

Friedel-Crafts Alkylation

Friedel-Crafts Acylation

#### Sulfonation

$$H_3C$$
 $CH_3$ 
 $H_2SO_4$ 
 $100^{\circ}C$ 
 $H_3C$ 
 $H_3C$ 
 $CH_3$ 
 $SO_3H$ 

OH group controls regiochemistry (69%)

#### Electrophilic Aromatic Substitution in Phenols

Halogenation

**Nitration** 

**Nitrosation** 

Sulfonation

Friedel-Crafts Alkylation

Friedel-Crafts Acylation

#### Friedel-Crafts Alkylation

CH<sub>3</sub> (CH<sub>3</sub>)<sub>3</sub>COH

H<sub>3</sub>PO<sub>4</sub>
60°C

$$CH_3$$
(CH<sub>3</sub>)<sub>3</sub>COH reacts
with H<sub>3</sub>PO<sub>4</sub> to give
(CH<sub>3</sub>)<sub>3</sub>C+

(CH<sub>3</sub>)<sub>3</sub>C+

(CH<sub>3</sub>)<sub>3</sub>COH reacts
(63%)

#### Electrophilic Aromatic Substitution in Phenols

Halogenation

**Nitration** 

**Nitrosation** 

Sulfonation

Friedel-Crafts Alkylation

**Friedel-Crafts Acylation** 

# 24.9 Acylation of Phenols

Acylation can take place either on the ring by electrophilic aromatic substitution or on oxygen by nucleophilic acyl substitution

#### Friedel-Crafts Acylation



under Friedel-Crafts conditions, acylation of the ring occurs (C-acylation)

(74%) (16%)

# O-Acylation

in the absence of AlCl<sub>3</sub>, acylation of the hydroxyl group occurs (O-acylation)



O-Acylation is kinetically controlled process; C-acylation is thermodynamically controlled

AlCl<sub>3</sub> catalyzes the conversion of the aryl ester to the aryl alkyl ketones; this is called the Fries rearrangement

# 24.10 Carboxylation of Phenols

Aspirin and the Kolbe-Schmitt Reaction



#### Aspirin is prepared from salicylic acid

how is salicylic acid prepared?

#### Preparation of Salicylic Acid



called the Kolbe-Schmitt reaction acidification converts the sodium salt shown above to salicylic acid

#### What Drives the Reaction?

acid-base considerations provide an explanation: stronger base on left; weaker base on right



stronger base:  $pK_a$  of conjugate acid = 10 weaker base:  $pK_a$  of conjugate acid = 3

#### Preparation of Salicylic Acid



how does carbon-carbon bond form?

recall electron delocalization in phenoxide ion
negative charge shared by oxygen and by the
ring carbons that are ortho and para to oxygen



## Mechanism of ortho Carboxylation



## Mechanism of ortho Carboxylation

# Why ortho? Why not para?



Why ortho?
Why not para?





weaker base:  $pK_a$  of conjugate acid = 3

stronger base:  $pK_a$  of conjugate acid = 4.5

# Intramolecular Hydrogen Bonding in Salicylate Ion

Hydrogen bonding between carboxylate and hydroxyl group stabilizes salicylate ion. Salicylate is less basic than para isomer and predominates under conditions of thermodynamic control.