25.17 Carbohydrate Structure Determination

Carbohydrate Structure Determination

Spectroscopy X-Ray Crystallography Chemical Tests once used extensively; now superceded by spectroscopic methods and x-ray crystallography reactions of carbohydrates can involve either open-chain form, furanose, or pyranose form

25.18 Reduction of Carbohydrates

Reduction of Carbohydrates

Carbonyl group of open-chain form is reduced to an alcohol.

Product is called an alditol.

Alditol lacks a carbonyl group so cannot cyclize to a hemiacetal.

Reduction of D-Galactose

reducing agent: NaBH₄, H₂O (catalytic hydrogenation can also be used)

D-Galactitol (90%)

25.19 Oxidation of Carbohydrates

Benedict's Reagent

$$\begin{array}{c} O \\ | \\ | \\ RCH + 2Cu^{2+} + 5HO^{-} \longrightarrow RCO^{-} + Cu_{2}O + 3H_{2}O \end{array}$$

Benedict's reagent is a solution of the citrate complex of CuSO₄ in water. It is used as a test for "reducing sugars." Cu²⁺ is a weak oxidizing agent.

A reducing sugar is one which has an aldehyde function, or is in equilibrium with one that does.

A positive test is the formation of a red precipitate of Cu_2O .

Examples of Reducing Sugars

Aldoses: because they have an aldehyde function in their open-chain form.

Ketoses: because enolization establishes an equilibrium with an aldose.

oxidized by Cu²⁺

Examples of Reducing Sugars

Disaccharides that have a free hemiacetal function.

Examples of Reducing Sugars

Disaccharides that have a free hemiacetal function.

oxidized by Cu²⁺

Glycosides are not reducing sugars

Methyl α-D-glucopyranoside lacks a free hemiacetal function; cannot be in equilibrium with a species having an aldehyde function

Oxidation of Reducing Sugars

The compounds formed on oxidation of reducing sugars are called aldonic acids.

Aldonic acids exist as lactones when 5- or 6membered rings can form.

A standard method for preparing aldonic acids uses Br₂ as the oxidizing agent.

Oxidation of D-Xylose

Nitric Acid Oxidation

Nitric acid oxidizes both the aldehyde function and the terminal CH_2OH of an aldose to CO_2H .

The products of such oxidations are called aldaric acids.

Nitric Acid Oxidation

Uronic Acids

Uronic acids contain both an aldehyde and a terminal CO₂H function.

25.20

Cyanohydrin Formation and Carbohydrate Chain Extension

Carbohydrate chains can be extended by using cyanohydrin formation as the key step in C—C bond-making.

The classical version of this method is called the Kiliani-Fischer synthesis. The following example is a more modern modification.

the resulting cyanohydrin is a mixture of two stereoisomers that differ in configuration at C-2; these two diastereomers are separated in the next step

L-Mannononitrile L-Gluconononitrile

L-Mannononitrile

L-Mannose (56% from L-arabinose)

L-Gluconononitrile

L-Glucose (26% from L-arabinose)

25.21 Epimerization, Isomerization, and Retro-Aldol Reactions of Carbohydrates

Enol Forms of Carbohydrates

Enolization of an aldose scrambles the stereochemistry at C-2.

This process is called *epimerization*. Diastereomers that differ in stereochemistry at only one of their stereogenic centers are called epimers.

D-Glucose and D-mannose, for example, are epimers.

Enol Forms of Carbohydrates

The enediol intermediate on the preceding slide can undergo a second reaction. It can lead to the conversion of D-glucose or D-mannose (aldoses) to D-fructose (ketose).

Retro-Aldol Cleavage

The D-fructose 6-phosphate formed according to the preceding slide undergoes phosphorylation of its free CH_2OH group to give D-fructose 1,6-diphosphate.

D-Fructose 1,6-diphosphate is cleaved to two 3carbon products by a reverse aldol reaction.

This *retro-aldol* cleavage is catalyzed by the enzyme *aldolase*.

Isomerization

25.22

Acylation and Alkylation of Hydroxyl Groups in Carbohydrates

Reactivity of Hydroxyl Groups in Carbohydrates

Hydroxyl groups in carbohydrates undergo reactions typical of alcohols.

acylation alkylation

Example: Acylation of a-D-glucopyranose

÷

HOCH₂ \mathbf{O} HO HO OH OH

000 ||| 5 CH₃COCCH₃

Example: Alkylation of methyl a-D-glucopyranoside

Example: Alkylation of methyl a-D-glucopyranoside

Ring sizes (furanose or pyranose) have been determined using alkylation as a key step.

Ring sizes (furanose or pyranose) have been determined using alkylation as a key step.

Ring sizes (furanose or pyranose) have been determined using alkylation as a key step.

Ring sizes (furanose or pyranose) have been determined using alkylation as a key step.

This carbon has OH instead of OCH₃. Therefore,its O was the oxygen in the ring.

25.23 Periodic Acid Oxidation of Carbohydrates

Recall Periodic Acid Oxidation

Section 15.12: Vicinal diols are cleaved by HIO_4 .

Cleavage of a vicinal diol consumes 1 mol of HIO_4 .

α-Hydroxy carbonyl compounds

Cleavage of an α -hydroxy carbonyl compound consumes 1 mol of HIO₄. One of the products is a carboxylic acid.

Also Cleaved by HIO₄

Compounds that contain three contiguous carbons bearing OH groups $R_2C + CH + CR'_2 + HIO_4 + R_2C = 0 + HCOH + HCOH OH OH + R'_2C = 0$

2 mol of HIO_4 are consumed. 1 mole of formic acid is produced.

Structure Determination Using HIO₄

Distinguish between furanose and pyranose forms of methyl arabinoside

2 vicinal OH groups; consumes 1 mol of HIO₄ 3 vicinal OH groups; consumes 2 mol of HIO₄