Chapter 24 From Petroleum to Pharmaceuticals

24.1 Petroleum Refining and the Hydrocarbons

24.2 Functional Groups and Organic Synthesis

24.3 Pesticides and Pharmaceuticals
Physical Properties of Alkanes and Cycloalkanes

Why do molecules tend to stick together?
Boiling Points

increase with increasing number of carbons

more atoms, more electrons, more opportunities for induced dipole-induced dipole forces

decrease with chain branching

branched molecules are more compact with smaller surface area—fewer points of contact with other molecules
Boiling points and melting points of n-alkanes

- CH_4
- n-C_4H_{10}
- n-C_7H_{16}
- n-C_8H_{18}

© 2003 Thomson-Brooks/Cole
Boiling Points

increase with increasing number of carbons

more atoms, more electrons, more opportunities for induced dipole-induced dipole forces

<table>
<thead>
<tr>
<th>Compound</th>
<th>Boiling Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heptane</td>
<td>bp 98°C</td>
</tr>
<tr>
<td>Octane</td>
<td>bp 125°C</td>
</tr>
<tr>
<td>Nonane</td>
<td>bp 150°C</td>
</tr>
</tbody>
</table>
Boiling Points

decrease with chain branching (WHY?)

branched molecules are more compact with smaller surface area—fewer points of contact with other molecules

n-octane: bp 125°C

2-Methylheptane: bp 118°C

2,2,3,3-Tetramethylbutane: bp 107°C
Boiling Points of Alkanes

governed by strength of intermolecular attractive forces
alkanes are nonpolar, so dipole-dipole and dipole-induced dipole forces are absent
only forces of intermolecular attraction are induced dipole-induced dipole forces
Induced dipole-Induced dipole attractive forces

two nonpolar molecules
center of positive charge and center of negative charge coincide in each
movement of electrons creates an instantaneous dipole in one molecule (left)
Induced dipole-Induced dipole attractive forces

temporary dipole in one molecule (left)
induces a complementary dipole in another molecule (right)
Induced dipole-Induced dipole attractive forces

temporary dipole in one molecule (left) induces a complementary dipole in other molecule (right)
Induced dipole-Induced dipole attractive forces

the result is a small attractive force between the two molecules
Induced dipole-Induced dipole attractive forces

the result is a small attractive force between the two molecules
Straight chain hydrocarbon
Lots of intermolecular contacts

Branched hydrocarbon
Fewer intermolecular contacts

(a)

(b)
Small organic molecules: required to sustain life and health

Life: food (pesticides and herbicides)

Health: disease and pain control (pharmaceuticals)

Large organic molecules: Polymers (many “mers” or repeating units)

Biomolecules: the blue print (DNA) and the machinery (proteins and sugars) of life
Organic short hand for structures

Note hydrocarbon skeleton, recognize functional groups

Isoamyl acetate

Benzyl acetate
Structure of some small molecule analgesics

Molecular shape and functional groups determine the onset of pain and the molecular structure for its relief

(a) Aspirin
(b) Acetaminophen (4-acetaminophenol)
(c) Morphine

© 2003 Thomson-Brooks/Cole
Structure of some small molecule pesticides

Kill insects indiscriminately. Also be toxic to humans.

[a] Nicotine [b] DDT [c] Malathion

[d] Methoprene
Structure of some small molecule herbicides

Kill only insects; some attract insects and make them sterile

© 2003 Thomson-Brooks/Cole
Structure of some small molecule antibiotics and

Bacteria mistake molecule (a) for a molecule they need to make folic acid. This mistake kills them.

[a] Sulfanilamide
[b] Penicillin G
[c] Tetracycline
Structure of some steroids

Cholesterol is found in all tissues of the body

Human sex hormones are structurally based on cholesterol