Chapter 18 Molecular orbitals and spectroscopy

- 18.1 Diatomic molecules
- 18.2 Polyatomic molecules
- 18.3 Conjugation of bonds and resonance structures
- 18.4 The interaction of light and matter (spectroscopy)
- 18.5 Buckyballs

18.1 Diatomic molecules

Constructing molecular orbitals from atomic orbitals

Constructive and destructive interference of waves

Bonding and antibonding molecular orbitals

Orbital correlation diagrams

MO energies, AO parentage, Bond order

Homonuclear and heteronuclear diatomic molecules

Diamagnetism of N_2 and paramagnetism of O_2

18.1 Diatomic Molecules

Atomic orbitals: orbitals that are localized on single atoms.

Molecular orbitals: orbitals that span two or more atoms.

Constructing molecular orbitals (MOs) by overlapping atomic orbitals (AOs)

 σ bonds: electron density of MO directed along bond axis

 π bonds: electron density of MO has a nodal plane that contains the bond axis

Constructive and destructive interference of waves

The orbital correlation diagram for overlap of two 1s orbitals

Correlation diagram for the hydrogen molecule, H_2

The electronic configuration of a H₂ molecule is σ_{1s}^2

The subscript $(_{1s})$ tells which AOs are combined, the superscript $(^2)$ tells how many electrons are in the MO

What hypothetical diatomic molecules might fit this electron configuration?

Answer: any diatomic with three electrons Isoelectronic valence = $(\sigma_{1s})^2(\sigma_{1s}^*)^1$

Plausible diatomics possessing only combinations of H or He atoms: H_2^- , He_2^+ , HHe and the configuration $(\sigma_{1s})^2(\sigma_{1s}^*)^1$

Bond order (BO): the net number of bonds, allowing for the cancellation of bonds by anti-bonds

We can deduce molecular stability from BO

BO = 1/2(N - N*) where N = number electrons in bonding orbitals and N* = number of electrons in antibonding orbitals

Example: $(\sigma_{1s})^{2}(\sigma_{1s}^{*})^{1}$

N = 2, N* = 1 BO = 1/2(N - N*) =1/2 Any diatomic molecule with BO > 0 is considered stable relative to the two dissociated atoms. A shared pair of electrons make a single covalent bond

Electrons in bonding orbitals enhance bonding, electrons in anti-bonding orbitals reduce bonding

Bond order is a measure of the bonding between two atoms: 1/2[(e in bonding MOs) - [(e in anti-bonding MOs)]

TABLE 18-1		Configurations and Bond Orders for First-Row Homonuclear Diatomic Molecules				
Species	Elect Configu	ron ration	Bond Order	Bond Enthalpy (kJ mol ⁻¹)	Bond Length (Å)	
H_2^+	$(\sigma_{1s})^1$		$\frac{1}{2}$	255	1.06	
H_2	$(\sigma_{1s})^2$		1	431	0.74	
He_2^+	$(\sigma_{1s})^{2}($	σ^*_{1s}) ¹	$\frac{1}{2}$	251	1.08	
He ₂	$(\sigma_{1s})^{2}($	$\sigma_{1s}^*)^2$	0	Not obs	served	

© 2003 Thomson - Brooks/Cole

What is the bond order of the first electronically excited state of H_2 ?

The electronic configuration of the first excited state of H₂ is $(\sigma_{1s})^1(\sigma_{1s}^*)^1$.

Bond order = 1/2(1 - 1) = 0

Photochemical excitation of H_2 makes it fly apart into 2 H atoms.

Building up the MOs of simple diatomic molecules

Mix atomic orbitals (AOs) of the same or similar energies to form molecular orbitals (MOs)

$$2s + 2s = \sigma_{2s} + \sigma_{2s} * \\ 2p_{z} + 2p_{z} = \sigma_{2p} + \sigma_{2p} * \\ 2p_{x} + 2p_{x} = \pi_{2p} + \pi_{2p} * \\ 2p_{y} + 2p_{y} = \pi_{2p} + \pi_{2p}$$

Total of 8 MOs which can hold up to 16 electrons

The constructive overlap of two $2p_z$ orbitals on neighboring atoms to produce a σ_{2pz} bonding orbital

 $2p_{z} + 2p_{z} = \sigma_{2p} + \sigma_{2p} *$

The destructive overlap of two $2p_z$ orbitals on neighboring atoms to produce a σ_{2pz} bonding orbital

 $2p_z + 2p_z = \sigma_{2p} + \sigma_{2p} *$

© 2003 Thomson-Brooks/Cole

Constructive and destructive overlap of 2 p orbitals to form σ and $\sigma*$ orbitals

(a) Bonding σ orbital; (b) Antibonding $\sigma*$ orbital

Overlap along the internuclear axis is termed σ overlap. The resulting orbitals are called σ and $\sigma*$ orbitals

© 2003 Thomson-Brooks/Cole

The destructive overlap of two $2p_x$ orbitals on neighboring atoms to produce a π_{2px} bonding orbital

The destructive overlap of two $2p_x$ orbitals on neighboring atoms to produce a π_{2px} anti-bonding orbital

 $2p_x + 2p_x = \pi_{2p} + \pi_{2p}^*$ Nodal plane

Constructive and destructive overlap of 2 p orbitals to form π and $\pi*$ orbitals

(a) Bonding π orbital; (b) Antibonding π * orbital

Overlap perpendicular to the internuclear axis is termed π overlap. A nodal plane that contains the bond axis. The resulting orbitals are called π and π * orbitals

Remember: + and - refer to mathematical symbols, not charge Now we have the orbitals, what are their relative energies?

Orbital energies for the 3Li-10Ne

Note: (1) The energy of the π_{2p} and σ_{2p} orbitals switch energy places between N and O; (2) The electron configuration for any isoelectronic valences is the same

Correlation diagrams for B_2 (left) and O_2 (right)

 $6 \text{ VE:} (\sigma_{2s})^2 (\sigma_{2s}^*)^2 (\sigma_{2p})^2 (\pi_{2p}^*)^0 (\sigma_{2p}^*)^0$ $12 \text{ VE:} (\sigma_{2s})^2 (\sigma_{2p}^*)^2 (\sigma_{2p}^*)^2 (\pi_{2p}^*)^0 (\sigma_{2p}^*)^0$

What are the bond orders? What are the magnetic properties?

Electron configurations for the diatomic molecules: B_2 , C_2 , N_2 , O_2 , F_2 , Ne_2

		/E: 6	8	10		12	14	16
	Large 2s-2p interaction				Small 2s-2p interaction			
		B ₂	C ₂	N ₂	von,	O ₂	F ₂	Ne ₂
	σ_{2p}^{*}		na 🗔 s la		σ_{2p}^*			11
	π_{2p}^*				π_{2p}^{*}	1 1	11 11	11 11
	σ_{2p}			11	π_{2p}	11 11	11 11	11 11
	π_{2p}	1 1	11 11	11 11	σ_{2p}	11	11	11
	σ_{2s}^*	11	11	11	σ^*_{2s}	11	11	11
	σ_{2s}	11	11	11	σ_{2s}	11	11	11
nd order nd enthalpy (kJ nd length (Å)	/mol)	1 290 1.59	2 620 1.31	3 941 1.10	Ser P k	2 495 1.21	1 155 1.43	0
agnetic behavio	r	Paramagnetic	Diamagnetic	Diamagnetic		Paramagnetic	Diamagnetic	-

tomic molecules.

The molecular orbital electronic configuration of 7N_2 Group V: Valence electrons = 10. Ignore core electrons

What is the bond order of N₂? BO = 1/2(N - N*) N = 8, N* = 2, N - N* = 6 BO = 1/2(6) = 3

How does the Lewis structure compare to the MO structure?

The molecular orbital electronic configuration of ${}^{8}O_{2}$ Group VI: Valence electrons = 12. Ignore core electrons

What is the electronic configuration of O_2 ?

 $(\sigma_{2s})^{2}(\sigma_{2s}^{*})^{2}(\sigma_{2p})^{2}(\pi_{2p}^{*})^{4}(\pi_{2p}^{*}\uparrow\uparrow)^{2}$

What is the bond order of O_2 ?

 O_2 possesses a net double bond and is paramagnetic

Electron configurations of the valence electrons of N_2 and O_2

Lewis structures

47 Oxygen, O₂

Paramagnetic:

Diamagnetic:

 $O_{2}: (\sigma_{2s})^{2} (\sigma_{2s}^{*})^{2} (\sigma_{2p}^{*})^{2} (\pi_{2p}^{*})^{4} (\pi_{2p}^{*} \uparrow \uparrow)^{2}$ $N_{2}: (\sigma_{2s}^{*})^{2} (\sigma_{2s}^{*})^{2} (\sigma_{2p}^{*})^{2} (\pi_{2p}^{*})^{4}$

 O_2 is paramagnetic

The molecular orbital electronic configuration of ${}^{9}F_{2}$

Group VII: Valence electrons = 14

What is the valence electronic configuration of F_2 ?

$$(\sigma_{2s})^2 (\sigma_{2s}^*)^2 (\sigma_{2p})^2 (\pi_{2p}^*)^4 (\pi_{2p}^*)^4$$

What is the bond order of F_2 ?

 F_2 possesses a net single bond

Molecular orbital configurations of homonuclear diatomics

Bond orders, bond lengths and bond energies

TABLE 18-2 Molecula			ar Orbitals of Homonuclear Diatomic Molecules				
Species	Numb Vale Elect	er of nce rons	Ground-State Valence-Electron Configuration	Bond Order	Bond Length (Å)	Bond Enthalpy (kJ mol ⁻¹)	
H ₂	2		$(\sigma_{2s})^2$	1	0.746	436	
He ₂	4		$(\sigma_{1s})^2(\sigma_{1s}^*)^2$	0	Not ob	served	
Li ₂	2		$(\sigma_{2s})^2$	1	2.67	106	
Be ₂	4		$(\sigma_{2s})^2 (\sigma_{2s}^*)^2$	0	2.45	9	
B ₂	6		$(\sigma_{2s})^2 (\sigma_{2s}^*)^2 (\pi_{2p})^2$	1	1.59	297	
C ₂	8		$(\sigma_{2s})^2 (\sigma_{2s}^*)^2 (\pi_{2p})^4$	2	1.24	607	
N_2	1	0	$(\sigma_{2s})^2 (\sigma_{2s}^*)^2 (\pi_{2p})^4 (\sigma_{2p_*})^2$	3	1.10	945	
O ₂	1	2	$(\sigma_{2s})^2 (\sigma_{2s}^*)^2 (\sigma_{2p})^2 (\pi_{2p})^4 (\pi_{2p}^*)^2$	2	1.21	498	
F ₂	1	4	$(\sigma_{2s})^2 (\sigma_{2s}^*)^2 (\sigma_{2p})^2 (\pi_{2p})^4 (\pi_{2p}^*)^4$	1	1.41	158	
Ne ₂	1	6	$(\sigma_{2s})^2 (\sigma_{2s}^*)^2 (\sigma_{2p_z})^2 (\pi_{2p})^4 (\pi_{2p}^*)^4 (\sigma_{2p_z}^*)^2$	0	Not ob	served	

© 2003 Thomson - Brooks/Cole

The bond orders from MO theory agree with Lewis

18.2 Polyatomic molecules

Valence bond theory and molecular orbital theory

Valence bond theory: localized bonds, like Lewis structures Hybridization of orbitals to make stronger bonds

Hybridization and molecular geometry

Hybridization and bond order. Single, double and triple bonds

Valence bond: Overlap of two s orbitals to produce a σ bond

Valence bond: Overlap of an s orbital and a p_z orbital to produce a σ bond

Valence bond: Overlap of two \mathbf{p}_z orbitals to produce a σ bond

Valence bond: Overlap of two \mathbf{p}_{x} orbitals to produce a π bond

Hybridization

If more than two atoms are involved in a molecule, the shapes of the orbitals must match the shape of the bonds that are needed (trigonal, tetrahedral, etc.). The atomic orbitals do not have these shapes, and must be mixed to achieve the needed shapes

Shapes of hybridized atomic orbitals

The hybridization of a s orbital and two p orbitals to produce three sp² orbitals

> + 120° 25 Three hybrid Orbitals $2p_x$ HAOs sp² $2p_v$ Atomic orbitals sp^2 hybrid orbitals © 2003 Thomson-Brooks/Cole

Three Atomic orbitals Aos 2s + two 2p

The orientations of four sp³ orbitals

© 2003 Thomson-Brooks/Cole

The hybridization of a s orbital and a p orbital to produce **two** sp hybrid orbitals

2s orbital could be + or -25 H--Be Н +. $2p_z$ $\rightarrow H$ -HBe-Be atomic orbitals • + Н Be--H Be sp hybrid orbitals (a) (b)

^{© 2003} Thomson-Brooks/Cole

TABLE 3.2 H	Hybridization	and Mo	lecular	Shape*
--------------------	---------------	--------	---------	--------

Electron arrangement	Number of atomic orbitals	Hybridization of the central atom	Number of hybrid orbitals	
linear	2	sp	2	
trigonal planar	3	sp^2	3	
tetrahedral	4	sp^3	4	
trigonal bipyramidal	5	$sp^{3}d$	5	
octahedral	6	sp^3d^2	6	

*Other combinations of *s*-, *p*-, and *d*-orbitals can give rise to the same or different shapes, but these combinations are the most common.