Lecture 16 C1403 October 31, 2005

18.1 Molecular orbital theory: molecular orbitals and diatomic molecules

18.2 Valence bond theory: hybridized orbitals and polyatomic molecules. From steric number to hybridization of atoms

Concepts: Bond order, bond lengths, connections of MO theory and VB theory with Lewis structures

Potential energy curves for the σ and σ^* orbitals of a diatomic molecule

Distance dependence of the energy of a σ and σ^* orbital

Making of a σ_z and σ_z^* orbital from overlap of two $2p_z$ orbitals

Making of a π_x and π_x * orbital from overlap of two $2p_x$ orbitals

Making of a π_y and π_y^* orbital from overlap of two $2p_y$ orbitals

The reason for the "switch" in the s and p MOs

Larger gap between σ_{2s} and σ_{2p} with increasing Z

Bond order: connection to bond energy and bond length

Bond enthalpy = bond energy = energy required to break the bonds between two atoms

Bond length = distance between two nuclei in a bond

TABLE 18-1

Configurations and Bond Orders for First-Row Homonuclear Diatomic Molecules

Species	Electron Configuration	Bond Order	Bond Enthalpy (kJ mol ⁻¹)	Bond Length (Å)
H_2^+	$(\sigma_{1s})^1$	$\frac{1}{2}$	255	1.06
H_2	$(\sigma_{1s})^2$	1	431	0.74
He_2^+	$(\sigma_{1s})^2(\sigma_{1s}^*)^1$	$\frac{1}{2}$	251	1.08
He ₂	$(\sigma_{1s})^2(\sigma_{1s}^*)^2$	0	Not observed	

Some examples of configurations, bond lengths, bond strength and bond order

$$O_2$$
 = $(\sigma_{2s})^2(\sigma_{2s}^*)^2(\sigma_{2p})^2(\pi_{2p})^4(\pi_{2p}^*)^2$

$$O_2^+ = (\sigma_{2s})^2(\sigma_{2s}^*)^2(\sigma_{2p})^2(\pi_{2p})^4(\pi_{2p}^*)^1$$

$$O_2^{1-} = (\sigma_{2s})^2 (\sigma_{2s}^*)^2 (\sigma_{2p})^2 (\pi_{2p})^4 (\pi_{2p}^*)^3$$

$$O_2^{2-} = (\sigma_{2s})^2 (\sigma_{2s}^*)^2 (\sigma_{2p})^2 (\pi_{2p})^4 (\pi_{2p}^*)^4$$

$$O_2$$
 Bond length = 1.21 \mathring{A} Bond order = 2

$$O_2^+$$
 Bond length = 1.12 \mathring{A} Bond order = 5/2

$$O_2^-$$
 Bond length = 1.26 Å Bond order = 3/2

$$O_2^{2-}$$
 Bond length = 1.49 Å Bond order = 1

Compare the Lewis and MO structures of diatomic molecules

$$C_{2} \qquad (\sigma_{2s})^{2}(\sigma_{2s}^{*})^{2}(\pi_{2p})^{4}(\sigma_{2p}^{*})^{0}(\pi_{2p}^{*})^{0}(\sigma_{2p}^{*})^{0} \qquad \mathbf{C} = \mathbf{C}$$

$$N_{2} \qquad (\sigma_{2s})^{2}(\sigma_{2s}^{*})^{2}(\pi_{2p}^{*})^{4}(\sigma_{2p}^{*})^{2}(\pi_{2p}^{*})^{0}(\sigma_{2p}^{*})^{0} \qquad \mathbf{N} = \mathbf{N}$$

$$O_{2} \qquad (\sigma_{2s})^{2}(\sigma_{2s}^{*})^{2}(\sigma_{2p}^{*})^{2}(\pi_{2p}^{*})^{4}(\pi_{2p}^{*})^{2}(\sigma_{2p}^{*})^{0} \qquad \mathbf{O} = \mathbf{O}$$

$$F_{2} \qquad (\sigma_{2s})^{2}(\sigma_{2s}^{*})^{2}(\sigma_{2p}^{*})^{2}(\pi_{2p}^{*})^{4}(\pi_{2p}^{*})^{4}(\sigma_{2p}^{*})^{0} \qquad \mathbf{F} = \mathbf{F}$$

What is the bond order of NO in Lewis terms and MO theory?

Valence electrons = 11

NO:
$$(\sigma_{2s})^2(\sigma_{2s}^*)^2(\sigma_{2p})^2(\pi_{2p})^4(\pi_{2p}^*)^1(\sigma_{2p}^*)^0$$

$$BO = 1/2(8 - 3) = 5/2$$

Lewis structure:
$$BO = 2$$
?

Odd electron is in an antibonding orbital

18.2 Polyatomic molecules

Valence bond versus molecular orbital theory

Hybridization of atomic orbitals to form molecular orbitals

From steric numbers to sp, sp² and sp³ hybridized orbitals

Hybridized orbitals and Lewis structures and molecular geometries

Double bonds and triple bonds

Hybridization is a theory that starts with geometry of molecules and then decides on the hybridization of the atoms based on steric number of the atoms

Steric number happens to be the same as the number of hybrid orbitals

TABLE 3.2 Hybridization and Molecular Shape*

Electron arrangement	Number of atomic orbitals	Hybridization of the central atom	Number of hybrid orbitals
linear	2	sp	2
trigonal planar	3	sp^2	3
tetrahedral	4	sp^3	4
trigonal bipyramidal	5	sp^3d	5
octahedral	6	sp^3d^2	6

^{*}Other combinations of *s*-, *p*-, and *d*-orbitals can give rise to the same or different shapes, but these combinations are the most common.

Hybridization

If more than two atoms are involved in a molecule, the shapes of the orbitals must match the shape of the bonds that are needed (trigonal, tetrahedral, etc.). The atomic orbitals do not have these shapes, and must be mixed (hybridized) to achieve the needed shapes

Three exemplar organic molecules

The hybridization of a s orbital and two p orbitals to produce three sp² orbitals

18.2 Bonding in Methane and Orbital Hybridization

Situature of Methane

tetrahedral bond angles = 109.5° bond distances = 110 pm

but structure seems inconsistent with electron configuration of carbon

Electron configuration of carbons

only two unpaired electrons

should form o bonds to only two hydrogen atoms

2s +

bonds should be at right angles to one another

so Ordonial Alybridization

Promote an electron from the 2s to the 2p orbital

so Orbital Albridization

so³ Ordointal Alybridization

Mix together (hybridize) the 2s orbital and the three 2p orbitals

so Ordonial Albridization

$$2\rho + + +$$

$$2 sp^3 + + + + +$$

4 equivalent half-filled orbitals are consistent with four bonds and tetrahedral geometry

The Call of Bond to Metherne

In-phase overlap of a half-filled 1s orbital of hydrogen with a half-filled sp³ hybrid orbital of carbon:

S

gives a σ bond.

Justification for Orbital Hybridization

consistent with structure of methane

allows for formation of 4 bonds rather than 2

bonds involving sp^3 hybrid orbitals are stronger than those involving s-s overlap or p-p overlap

18.2 sp³ Hybridization and Bonding in Ethane

Structure of Etherne

tetrahedral geometry at each carbon

C—H bond distance = 110 pm

C—C bond distance = 153 pm

The Omound Educate

In-phase overlap of half-filled sp^3 hybrid orbital of one carbon with half-filled sp^3 hybrid orbital of another.

Overlap is along internuclear axis to give a σ bond.

The Omound Educate

In-phase overlap of half-filled sp^3 hybrid orbital of one carbon with half-filled sp^3 hybrid orbital of another.

Overlap is along internuclear axis to give a σ bond.

18.2 sp² Hybridization and Bonding in Ethylene

Statuetiume of Etlandene

 C_2H_4

H₂C=CH₂

planar

bond angles: close to 120°

bond distances: C-H = 110 pm

C = C = 134 pm

spe Orbital Hybridization

Promote an electron from the 2s to the 2p orbital

sol Orbital Alybridization

sof Ordoral Lybridization

Mix together (hybridize) the 2*s* orbital and two of the three 2*p* orbitals

sol Orbital Albridization

3 equivalent half-filled sp² hybrid orbitals plus 1 p orbital left unhybridized

sol Ordonial Albertalization

2 of the 3 sp^2 orbitals are involved in σ bonds to hydrogens; the other is involved in a σ bond to carbon

1.18 sp Hybridization and Bonding in Acetylene

Sinducitude of Liverial ence

 C_2H_2 HC = CH

linear

bond angles: 180°

bond distances: C-H = 106 pm

CC = 120 pm

SO Odobie Wallow delización

Promote an electron from the 2s to the 2p orbital

so Orbinal Elyppidization

SO Ordorital Little relation

Mix together (hybridize) the 2s orbital and one of the three 2p orbitals

so Oppitul Hybridization

2 equivalent half-filled *sp* hybrid orbitals plus 2 *p* orbitals left unhybridized

so Orbital Alloridization

1 of the 2 sp orbitals is involved in a σ bond to hydrogen; the other is involved in a σ bond to carbon

so Oppinial Hybridization

2 sp _______

m Bonding in Acetylene

2 sp ______

the unhybridized p orbitals of carbon are involved in separate π bonds to the other carbon

m Bonding in Acetylene

2 sp _____

one π bond involves one of the p orbitals on each carbon there is a second π bond perpendicular to this one

m Bonding in Acetylene

2 sp _____

m Bonding in Accivicac

How to determine the hybridization of an atom in a polyatomic molecule

Draw a Lewis structure of the molecule

Determine the steric number of the atoms of the molecule

From the steric number assign hybridization as follows:

Hybridization	Example
sp	нс≡сн
sp ²	HC≡CH H2C=CH2
sp ³	H_3C-CH_3
	sp ²

sp hybridization and acetylene: $H-C\equiv C-H$

one s orbital and one p orbital = two sp orbitals

An isoelectroic molecule

H—C≡N:

Other examples of sp^2 and sp hybridized carbon

Formaldehyde: H₂C=O

Carbon dioxide: O=C=O

Typo: CH bond in figure below should be labeled sp²

sp² hybridization and ethylene: H₂C=CH₂

Hybridization and methane: CH₄

Hybridization	Orientation of hybrid orbitals	Number of σ bonds	Molecular geometrics
sp		2	Linear
sp ²	8	3 2	Trigonal planar Angular
sρ ³	8	4 3 2	Tetrahedral Trigonal pyramidal Bent
dsp ³	8	5 4 3 2	Trigonal bipyramida Seesaw T shape Linear
d ² sp ³	8	6 5 4	Octahedral Square pyramidal Square planar

SN = 2

SN = 3

SN = 4

SN = 5

SN = 6

Hybrid orbitals are constructed on an atom to reproduce the electronic arrangement characteristics that will yield the experimental shape of a molecule

Examples

$$BeF_2$$
: $SN = 2 = sp$

$$BF_3$$
: $SN = 3 = sp^2$

$$CH_4$$
: $SN = 4 = sp^3$

$$PF_5$$
: $SN = 5 = sp^3d$

$$SF_6$$
: $SN = 6 = sp^3d^2$

Extension to mixing of d orbitals

d²sp³ hybridization six orbitals mixed = octahedral

dsp³ hybridization Five orbitals mixed = trigonal bipyramidal