Columbia University in the City of New York
New York, N.Y. 10027

Chemistry C2407x	2002	
First Exam		George Flynn
September 26, 2002	Total Points: 150	75 Minutes

All questions are NOT weighted equally. I have attempted to order the questions from the least difficult to the most difficult, but 'beauty is in the eye of the beholder'", so skip around to find the problems that are easiest for you. Good luck!

Please print your name in the boxes provided and sign where indicated. Tear off this sheet and pass it to the right for the proctors to pick up.

Print your last name:
 Print your first name:

Signature:

Columbia University in the City of New York
New York, N.Y. 10027

All questions are NOT weighted equally. I have attempted to order the questions from the least difficult to the most difficult, but 'beauty is in the eye of the beholder', so skip around to find the problems that are easiest for you. Good luck!

Please print your name in the boxes provided.

Print your last name:
Print your first name:
Do not write anything else on this page. Answer the questions in the spaces provided on the
following pages.

$\mathbf{1 a}$	$\mathbf{2 a}$	$\mathbf{3 a}$
		4a
$\mathbf{1 b}$	$\mathbf{2 b}$	$\mathbf{3 b}$
$\mathbf{1 c}$	$\mathbf{3 c}$	$\mathbf{4 b}$
$\mathbf{1 d}$	$\mathbf{3 d}$	$\mathbf{4 c}$
	$\mathbf{3 e}$	
	$\mathbf{3 f}$	

\square
\square
\square

Print your name here:

Problem 1: (35 points) [Oxtoby Problems 4.41-4.43]
a)(10 points) Compute the root-mean-square speed of H_{2} molecules in hydrogen gas at a temperature of $300^{\circ} \mathrm{K}$. The molecular weight of H_{2} is $2 \mathrm{gm} / \mathrm{mole}$. Show all reasoning clearly.
b)(10 points) Compute the root-mean-square speed of SF_{6} molecules in sulfur hexafluoride gas at a temperature of $300^{\circ} \mathrm{K}$. The molecular weight of SF_{6} is $146 \mathrm{gm} / \mathrm{mole}$. Show all reasoning clearly.

Print your name here:

c)(10 points) Compute the root-mean-square speed of 500 Na atoms contained in an optical trap of volume $1.0 \times 10^{-15} \mathrm{~m}^{3}$, at a temperature of $0.00024^{\circ} \mathrm{K}$. The atomic weight of Na is $23 \mathrm{gm} / \mathrm{mole}$. Show all reasoning clearly.
d)(5 points) Compute the ratio of the root-mean-square speed of He at the surface of the sun, where the temperature is $6000^{\circ} \mathrm{K}$, to the root-mean-square speed of He in interstellar space, where the temperature is $100^{\circ} \mathrm{K}$. The atomic weight of He is $4 \mathrm{gm} /$ mole. Show all reasoning clearly.

Print your name here:

Problem 2: ($\mathbf{2 0}$ points) 2.00 moles of diatomic N_{2} gas and 1.00 moles of monatomic He gas are confined to a rigid container of fixed volume V .
a)(10 points) Calculate the heat absorbed by this gas mixture in the vessel of fixed volume, if the temperature is raised from $250^{\circ} \mathrm{K}$ to $350^{\circ} \mathrm{K}$. Show all reasoning clearly.
b)(10 points) Imagine now that the sample of 2.00 moles of N_{2} gas and 1.00 moles of He gas is transferred to a cylindrical container with a moveable, frictionless piston that holds the gas at a constant pressure of 2.00 atm . Determine the heat absorbed by this sample if its temperature is raised from 350 to $400^{\circ} \mathrm{K}$ at constant pressure. Show all reasoning clearly.

Print your name here:

Problem 3: (50 Points) A 1.0 liter bulb is evacuated until the pressure of gas inside the bulb is negligible. Unfortunately, there is a hole in the bulb that allows air to leak into the bulb and the pressure to rise to $1.00 \times 10^{-6} \mathrm{Atm}$ after 1.00 hour. In what follows, use exact kinetic theory formulas from the free formula sheet. You may assume that the surrounding atmosphere of gas is pure N_{2} ($\mathrm{MW}=28$ $\mathrm{gm} / \mathrm{mole}$) at one atmosphere pressure and that the temperature is constant at $275^{\circ} \mathrm{K}$. The pressure of the gas surrounding the bulb never changes because the volume of the surroundings is infinite compared to the volume of the bulb.
a) (5 points) Determine the average speed of N_{2} molecules in this problem. Show all reasoning clearly!
b) ($\mathbf{1 0}$ points) What is the number density ρ_{s} (number of molecules $/ \mathrm{cm}^{3}$), of N_{2} molecules in the surrounding atmosphere? Show all reasoning clearly.

Print your name here:

c) (5 points) What is the number density $\rho_{\mathbf{b}}$ (number of molecules $/ \mathrm{cm}^{3}$), of N_{2} molecules in the bulb at the end of one hour? Show all reasoning clearly.
d) ($\mathbf{1 0}$ points) To be exact, N_{2} molecules effuse into the bulb and once inside can effuse out again. By considering the ratio of (the constant rate of effusion in) to (the maximum rate of effusion out) during the one hour leak time, show that effusion out of the bulb can be safely neglected. Show all reasoning clearly.

Print your name here:

e)(10 points) Determine the rate (molecules/sec) at which molecules leak into the bulb over the 1 hour period from the data given. Show all reasoning clearly.
f) (10 points) What is the area of the hole in the bulb through which the gas leaks? Show reasoning clearly.

Print your name here:

Problem 4 (45 points) In the binary collision theory of chemical reactions, the energy needed to "climb the barrier" E_{A} to the transition state comes from the kinetic energy of relative motion of the reactants, A and B. Suppose instead that this form of energy is completely useless in promoting the reaction between A and B. (This often turns out to be true for reactions with large E_{A} because the number of energetic molecules in the high energy tail of the Boltzmann Distribution at low to moderate temperatures is very small.)

However, "internal" energy added to either of the molecules by the absorption of light can be effective in promoting chemical reaction. Suppose that only molecule A is capable of absorbing light and let the energy added to molecule A by light absorption be E_{L}. A mixture of A and B is subjected to continuous irradiation by a laser beam producing a constant fraction f_{A} of excited A molecules with energy E_{L}. We designate the excited A molecules as A^{*}. You may assume that the speed distribution for A^{*} is identical to that for A before excitation with light. In what follows, you may wish to consult the Free Formula Sheet for definitions of the "All or Nothing" and Arrhenius models.
a)(10 points) If $\mathrm{P}\left(\mathrm{E}_{\mathrm{L}}\right)$ is the reaction probability when an A molecule of energy E_{L} (i.e. an A^{*} molecule) encounters any B molecule, write an expression for the reaction rate using concepts from the binary collision model. Show all reasoning clearly.

Print your name here:

b)(10 points) Using the "All or Nothing" model, write an expression for the reaction rate between A and B when $\mathrm{E}_{\mathrm{L}}=\mathrm{E}_{\mathrm{A}} / 2$ and when $\mathrm{E}_{\mathrm{L}}=2 \mathrm{E}_{\mathrm{A}}$. Show all reasoning clearly.
c)(10 points) Using the "Arrhenius" model, write an expression for the reaction rate between A and B when $\mathrm{E}_{\mathrm{L}}=\mathrm{E}_{\mathrm{A}} / 2$ and when $\mathrm{E}_{\mathrm{L}}=2 \mathrm{E}_{\mathrm{A}}$. Show all reasoning clearly.

Print your name here:

d)(15 points) A more realistic picture for light absorption is that both A and B molecules can absorb light. Suppose that both A and B molecules absorb light of energy $\mathrm{E}_{\mathrm{L}}=2 \mathrm{E}_{\mathrm{A}}$, with the fraction of A molecules excited being f_{A} and the fraction of B molecules excited being f_{B}. Using the Arrhenius model, write an expression for the reaction rate. (Note that, if N_{A} is the total number of A molecules, the number of excited A's is $f_{A} N_{A}$ while the number of unexcited A's is $\left(1-f_{A}\right) N_{A}$. A similar comment applies to B molecules.).

Show all reasoning clearly. (Be careful, this question is more subtle than it may appear! There are three different "kinds" of collisions.)

[^0]
[^0]: The End

