Columbia University in the City of New York New York, N.Y.10027

Department of Chemistry

212-854-4162

3109 Havemeyer Hall

Chemistry C2407x

George Flynn

Problem Set 2

Solutions to Oxtoby Even Numbered Problems

Problem 13.32

Reaction Mechanism Elementary Steps:

 $A \xleftarrow[k_{-1}]{} B + C, A \xrightarrow[k_{-1}]{} B + C, C + D \xleftarrow[k_{-2}]{} E, C + D \xrightarrow[k_{2}]{} E$ $E \xrightarrow{k_3} F$ Make steady state assumption for [C], [E] and express rate of production of [F] in terms of [A], [B], [D] $d[F] / dt = k_3[E]$ $d[E] / dt = k_2[C][D] - k_2[E] - k_3[E] = 0$ (Steady State Assumption) $[E] = k_2[D][C] / (k_2 + k_3)$ Since [C] is an intermediate (usually undetectable in the laboratory), use steady state approximation to eliminate it \rightarrow $d[C] / dt = k_1[A] - k_1[B][C] - k_2[C][D] + k_2[E] = 0$ To solve for [C], substitute [E] = $k_2[D][C] / (k_2 + k_3) \rightarrow$ $k_1[A] - k_2[D][C] - k_2[D][C] + k_2k_2[D][C] / (k_2 + k_3) = 0$ Solve for $[C] \rightarrow$ $[C] = \frac{\mathbf{k}_{1}[\mathbf{A}]}{\mathbf{k}_{-1}[\mathbf{B}] + \mathbf{k}_{2}[\mathbf{D}] - \mathbf{k}_{2}\mathbf{k}_{-2}[\mathbf{D}]/(\mathbf{k}_{-2} + \mathbf{k}_{3})}$ $dF / dt = k_3[E] = \{k_3k_2[D] / (k_2 + k_3)\}[C$ $dF / dt = \left\{ \frac{\mathbf{k}_{2} \mathbf{k}_{3} [\mathbf{D}]}{\mathbf{k}_{-2} + \mathbf{k}_{3}} \right\} \left\{ \frac{\mathbf{k}_{1} [\mathbf{A}]}{\mathbf{k}_{-1} [\mathbf{B}] + \mathbf{k}_{2} [\mathbf{D}] - \mathbf{k}_{2} \mathbf{k}_{-2} [\mathbf{D}] / (\mathbf{k}_{-2} + \mathbf{k}_{3})} \right\}$ $dF / dt = k_1 k_2 k_3 [A][D] / \{k_{-1} (k_{-2} + k_3)[B] + k_2 (k_{-2} + k_3)[D] - k_2 k_{-2}[D]\}$ but $k_2(k_2 + k_3)[D] - k_2k_2[D] = k_3k_2[D]$ So → $dF/dt = k_1k_2k_3[A][D] / \{k_1(k_2 + k_3)[B] + k_2k_3[D]\}$ (Steady State Result) For problem 25b, the first 2 steps are assumed to reach equilibrium with $k_1[A] = k_{-1}[B][C]$ and $k_2[C][D] = k_{-2}[E]$ $dF/dt = k_3[E]$ From 1^{st} of these, $[C] = k_1[A] / k_1[B]$ while the 2^{nd} gives $[E] = k_2[D][C] / k_2 \rightarrow$

$$[E] = (k_2 / k_{.2})[D] \{k_1[A] / k_{.1}[B]\} \text{ or } \rightarrow$$

$$\begin{split} &[E] = k_1k_2[A][D] / k_{.1}k_{.2}[B] \\ &d[F]/dt = k_3[E] = k_1k_2k_3[A][D] / k_{.1}k_{.2}[B] \\ &\text{The steady state expression above reduces to this when } \\ &k_1k_2[B] >> k_{.1}k_3[B] + k_2k_3[D] \\ &\text{This is equivalent to } k_2 >> k_3 \text{ and } k_1k_2[B] >> k_2k_3[D] \end{split}$$

Problem 13.46

 $CO_2 + 2 H_2O \rightarrow HCO_3^- + H_3O^+$ when catalyzed by carbonic anhydrase, obeys Michaelis-Menten kinetics

 $E + CO_2 \leftarrow ECO_2$ $E+CO_2 \xrightarrow{k_1} ECO_2$ $ECO_2 + 2 H_2O \xrightarrow{k_2'} E + HCO_3^- + H_3O^+$ (Product = P = [HCO_3^-]) $d[P]/dt = k_2^{2} [H_2O]^{2} [ECO_2]$ Usually, $[H_2O] >>> [E]$, $[ECO_2]$, etc., and remains constant, so k_2 $[H_2O]^2 = k_2 \rightarrow d[P]/dt = k_2[ECO_2]$ $d[ECO_2]/dt = k_1[E][CO_2] - (k_1 + k_2)[ECO_2] = 0$ $[E_0] = [E] + [ECO_2]$ $k_1[E_0][CO_2] - k_1[ECO_2][CO_2] - (k_1 + k_2)[ECO_2] = 0$ $[ECO_2] = k_1[E_0][CO_2] / \{k_1[CO_2] + (k_1 + k_2)\}$ $[ECO_2] = [E_0] / \{1 + (k_1 + k_2) / k_1 [CO_2]\}$ $d[P]/dt = k_2[ECO_2]$ $d[P]/dt = k_2[E_0] / \left\{ 1 + \frac{\mathbf{k}_{-1} + \mathbf{k}_2}{\mathbf{k}_1} \frac{1}{[\mathbf{CO}_2]} \right\}$ This is exactly the M-M result with $k_2[E_0] = V_{max}$ and $(k_{-1} + k_2) / k_1 = k_M$ with $[CO_2] = [S]$ Given $k_M = 8 \times 10^{-5}$ mole/liter and $k_2 = 6 \times 10^5$ s⁻¹ a) What is V_{max} if $[E_0] = 5 \times 10^{-6} M$ $d[P]/dt \mid_{max} = limit [CO_2] \rightarrow \infty = k_2[E_0]$ $V_{max} = (6 \times 10^{+5} \text{ s}^{-1})(5 \times 10^{-6} \text{ M}) = 3.0 \text{ mole/liter} -\text{s}^{-1}$ b) At what $[CO_2]$ will $d[P]/dt = 0.3 V_{max}$? $d[P]/dt = V_{max} / (1 + k_M / [CO_2])$ $d[P]/dt = 0.3 V_{max} = V_{max} / (1 + k_M / [CO_2]_{0.3})$ $1 + k_{\rm M} / [{\rm CO}_2]_{0.3} = 1 / 0.3$ $k_{\rm M} / [{\rm CO}_2]_{0.3} = 1 / 0.3 - 1 = (1 - 0.3) / 0.3 = 7 / 3$ $[CO_2]_{0.3} = k_M (3 / 7)$ $[CO_2]_{0.3} = \{(8 \times 10^{-5}) \text{ mole/liter}\} 3 / 7$ $[CO_2]_{0.3} = 3.43 \times 10^{-5}$ mole/liter

Problem 10.18

 $pH = 7.4 = -log[H_3O^+] [H_3O^+] = 10^{-7.4}$ $[H_3O^+] = 3.98 \times 10^{-8} M$ $K_w = [H_3O^+][OH^-] = 2.4 \times 10^{-14}$ $[OH^-] = 2.4 \times 10^{-14} / [H_3O^+]$

 $[OH^{-}] = 2.4 \times 10^{-14} / 3.98 \times 10^{-8}$ $[OH^{-}] = 6.03 \times 10^{-7} M$

Problem 10.22

a) $C_5H_4NCOOH + H_2O(l) \Leftrightarrow C_5H_4NCOO^{-}(aq) + H_3O^{+}(aq)$

b) If K_a for C_5H_4NCOOH is 1.5×10^{-5} , what is K_b for $C_5H_4NCOO^-$ (aq) $+H_2O$ (l) $\Leftrightarrow C_5H_4NCOOH$ (aq) $+ OH^-$ (aq) $K_b = [C_5H_4NCOOH][OH^-] / [C_5H_4NCOO^-]$ Multiply by $[H_3O^+] / [H_3O^+] \rightarrow$ $K_b = \{[C_5H_4NCOOH] / [C_5H_4NCOO^-][H_3O^+]\} \{[OH^-][H_3O^+]\} \}$ $K_b = (1 / K_a) K_w = K_w / K_a$ $K_b = 1.00 \times 10^{-14} / 1.5 \times 10^{-5} = 6.67 \times 10^{-10}$

c) The K_a for pyridinium ion HC₅H₅N⁺, the conjugate acid of pyridine, C₅H₅N, (Table 10.2) is $5.6 \times 10^{-6} = K_a \rightarrow K_b (C_5H_5N) = 1.0 \times 10^{-14} / 5.6 \times 10^{-6} = 1.79 \times 10^{-9}$ So K_b (C₅H₅N) > K_b (C₅H₄NCOO⁻) pyridine is the stronger base

Problem 10.28

Vitamin C, $HC_6H_7O_6$ has $K_a 8.0 \times 10^{-5}$? pH of a solution of a 500 mg tablet diluted to 100mL in H₂O. Molecular weight of $HC_6H_7O_6$ is 176.126 gm/mole 500 mg = 0.5 gm = (0.5 / 176.126) moles 500 mg is 2.84 × 10⁻³ moles of ascorbic acid Initial concentration is 2.84 × 10⁻³ moles / 0.1 liter = 0.0284 M

$$\begin{split} &HC_{6}H_{7}O_{6} + H_{2}O \Leftrightarrow C_{6}H_{7}O_{6}^{-} + H_{3}O^{+} \\ &0.0284\text{-}x & x & x \\ &K_{a} = [C_{6}H_{7}O_{6}^{-}][H_{3}O^{+}] / [HC_{6}H_{7}O_{6}] = 8.0 \times 10^{-5} \\ &8.0 \times 10^{-5} = (x)(x) / (.0284 - x) \\ &\text{Since } K_{a} << 1 \text{ must not dissociate much } HC_{6}H_{7}O_{6} \\ &\text{ So guess } x << 0.0284 \rightarrow \\ &x^{2} = (8.0 \times 10^{-5})(0.0284) = 2.27 \times 10^{-6} \\ &x = [H_{3}O^{+}] = 1.51 \times 10^{-3} \text{ M} \\ &pH = 2.82 \\ \text{``Exact Solution'': } x^{2} = (.0284 - x) 8.0 \times 10^{-5} \\ &x^{2} + 8.0 \times 10^{-5} x - 2.27 \times 10^{-6} = 0 \\ &2x = -8.0 \times 10^{-5} + (64 \times 10^{-10} + 4(2.27 \times 10^{-6}))^{1/2} \\ &2x = -8 \times 10^{-5} + 3.01 \times 10^{-3} \\ &x = [H_{3}O^{+}] = 1.47 \times 10^{-3}, pH = 2.83 \end{split}$$

Problem 10.36

 $CH_3NH_2 + H_2O \Leftrightarrow CH_3NH_3^+ + OH^ K_{b} = 4.4 \times 10^{-4} = [CH_{3}NH_{3}^{+}][OH^{-}] / [CH_{3}NH_{2}]$ Initial concentration of $CH_3NH_2 = 0.070$ moles/ 0.8 liter = 0.0875 M $CH_3NH_2 + H_2O \Leftrightarrow CH_3NH_3^+ + OH^-$ 0.0875 - xХ Х $4.4 \times 10^{-4} = x^2 / (0.0875 - x)$ Approximate solution 0.0875 $-x \approx .0875$ $x^{2} = (0.0875)(4.4 \times 10^{-4}) = 3.85 \times 10^{-5}$ $x = [OH^{-}] = 6.20 \times 10^{-3} M$ $[H_3O^+][OH^-] = K_w = 10^{-14}$ $[H_3O^+] = 10^{-14} / 6.20 \times 10^{-3} = 1.61 \times 10^{-12} M$ $pH = -log[H_3O^+] = 11.79$ "Exact Solution": $4.4 \times 10^{-4} = x^2 / (0.0875 - x)$ $x^{2} + 4.4 \times 10^{-4}x - (.0875)(4.4 \times 10^{-4}) = 0$ $2x = -4.4 \times 10^{-4} + \{(4.4 \times 10^{-4})^2 + 4(.0875)(4.4 \times 10^{-4})\}^{1/2}$ $= -4.4 \times 10^{-4} + \{(1.54 \times 10^{-4})^{1/2}\}$ $2x = 1.198 \times 10^{-2}$ $x = 5.99 \times 10^{-3}$ $[OH^{-}] = 5.99 \times 10^{-3}$ $[H_3O^+] = 10^{-14} / 5.99 \times 10^{-3} = 1.67 \times 10^{-12}$ pH = 11.78

Problem 10.46

The acid ionization of sulfanilic acid has the equilibrium law

$$\frac{[\mathrm{NH}_{2}\mathrm{C}_{6}\mathrm{H}_{4}\mathrm{SO}_{3}^{-}][\mathrm{H}_{3}\mathrm{O}^{+}]}{[\mathrm{NH}_{2}\mathrm{C}_{6}\mathrm{H}_{4}\mathrm{SO}_{3}\mathrm{H}]} = K_{\mathrm{a}} = 5.9 \times 10^{-4}$$

Initial concentrations: $[NH_2C_6H_4SO_3^-] = 0.13$ and $[NH_2C_6H_4SO_3H] = 0.20$

 $NH_2C_6H_4SO_3H + H_2O = NH_2C_6H_4SO_3^- + H_3O^+$ 0.20-x 0.13+x x

a) The pH is computed by substituting 0.20 M –x for the concentration of sulfanilic acid and 0.13 M + x for the concentration of sulfanilate ion, solving for $x = [H_3O^+]$ and taking the negative logarithm. However, remember from our discussion of buffers, x<<< 0.2, 0.13. So,

 $(0.13)(x)/(0.20)=5.9x10^{-4}$

Thus, $x=9.08 \times 10^{-4}$ and the pH is 3.04.

b) Adding the HCl converts 0.040 mol of sulfanilate ion to its conjugate acid, sulfanilic acid.

NH ₂ C ₆ H ₄ SO ₃ H	+ H ₂ O	=	$NH_2C_6H_4SO_3^-$	+	H_3O^+
0.20			0.13		.040 Initial
0.24			0.09		≈0
0.24-x			0.09+x		x Final

The concentrations of the two are 0.24 M - x and 0.09 M + x, respectively. Again remember from our discussion of buffers that x<<< .24, .09, so,

 $(0.09)(x)/(0.24) = 5.9x10^{-4}$.

Thus $x = 1.57 \times 10^{-3}$ and the pH is 2.80.

Problem 10.54

Initially, before add base, just have chloroacetic acid which dissociates to give its conjugate base:

$$CH_2CICOOH + H_2O = CH_2CICOO^- + H_3O^+$$

0.100-x x x

$$\frac{x^2}{0.1000 - x} = 1.4 \times 10^{-3}$$

but x<<<0.100: x = 1.18 x 10^{-2} M = [H₃O⁺] pH = 1.93 (More exact if solve quadratic: x = 1.12 x 10^{-2} M = [H₃O⁺], pH = 1.95)

(b) After 5 mL of 0.100 M NaOH are added convert 0.500 millimoles of chloroacetic acid to its conjugate base and new volume is 55 mL. Original number of moles of chloroacetic acid = (50/1000)(0.1) = 0.005 moles = 5 millimoles.

CH ₂ ClCOOH -	+ $H_2O = CH_2ClCOO^-$	$+ H_3O^+$
.00500005	.0005	≈0 (Moles) (Action of base, NaOH)
(4.5/55)	(0.5/55)	≈0 M

$$(4.5/55)-x (0.5/55)+x x$$

$$\frac{\left(\frac{5.00 \times 0.1000 \text{ mmol}}{55.00 \text{ mL}} + x\right)x}{\left(\frac{4.50 \text{ mmol}}{55.00 \text{ mL}} - x\right)} = 1.4 \times 10^{-3}$$

$$\frac{(9.091 \times 10^{-3} + x)x}{8.182 \times 10^{-2} - x} = 1.4 \times 10^{-3}$$
$$x^{2} + (1.049)10^{-2} x - (1.145) 10^{-4} = 0$$
$$x = 6.67 x 10^{-3} = [H_{3}O^{+}] \qquad pH = 2.18$$

(Note x is significant (about 8%) compared to concentration of chloroacetic acid. Must solve quadratic!)

c) After addition of 25 mL of base, total volume is 75 mL:

$$\frac{\left(\frac{2.50\text{mmol}}{75.00\text{mL}} + x\right)x}{\left(\frac{2.50\text{mmol}}{75.00\text{mL}} - x\right)} = 1.4 \times 10^{-3}$$

$$\frac{(0.0333 + x)x}{0.0333 - x} = 1.4 \times 10^{-3}$$

x = [H₃O⁺] = 1.3 x 10⁻³, pH = 2.89

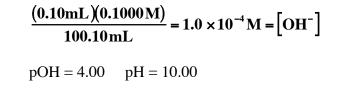
d) After addition of 49 mL of base, total volume is 99 mL: (4.90mmol)

$$\frac{\left(\frac{4.90\text{ mmol}}{99.00\text{ mL}} + x\right)x}{\left(\frac{0.10\text{ mmol}}{99.00\text{ mL}} - x\right)} = 1.4 \times 10^{-3}$$

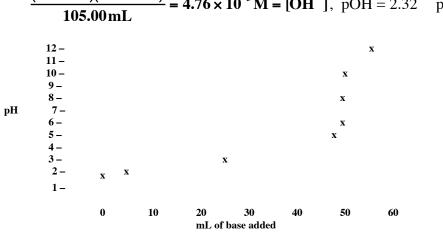
$$x = 2.8 \times 10^{-5} = [H_3O^+]$$
 pH = 4.56

e) After the addition of 49.9 mL of base, total volume is 99.9 mL:

$$\frac{\left(\frac{4.99\,\mathrm{mmol}}{99.90\,\mathrm{mL}} + x\right)x}{\left(\frac{0.010\,\mathrm{mmol}}{99.90\,\mathrm{mL}} - x\right)} = 1.4 \times 10^{-3}$$


$$x = 2.7 x 10^{-6} = [H_3O^+]$$
 pH = 5.56

f) At the equivalence point, we have a $0.0500 \text{ M CH}_2\text{ClCOO}^-$ solution because moles of chloroacetate at end point are same as moles of chloroacetic acid at the beginning (0.005 moles) but the volume is now 100mL.


CH₂ClOO⁻(*aq*) + H₂O(*l*)
$$\Leftrightarrow$$
 CH₂ClCOOH(*aq*) + OH⁻(*aq*)
[CH₂ClCOOH] = [OH⁻] = *x*

$$\frac{x^2}{0.0500 - x} = K_b = \frac{1.0 \times 10^{-14}}{1.4 \times 10^{-3}} = 7.14 \times 10^{-12}$$
x = 6.0 x 10⁻⁷ = [OH⁻]
pOH = 6.22 pH = 7.78

g) 0.10 mL NaOH beyond the equivalence point, volume is 100.10 mL.

h) 5.00 mL NaOH beyond the equivalence point, volume is 105.0 mL.

 $\frac{(5.00 \text{mL})(0.1000 \text{M})}{105.00 \text{mL}} = 4.76 \times 10^{-3} \text{M} = [\text{OH}^-], \text{ pOH} = 2.32 \text{ pH} = 11.68$