Columbia University in the City of New York

 New York, N.Y. 10027Department of Chemistry
Chemistry C2407x

3109 Havemeyer Hall
George Flynn

Homework Assignment 3

Solution to Oxtoby Even Numbered Problems 7.36 and 7.68

Problem 7.36:

For all cases $\square \mathrm{H}^{\circ}=\square \square \mathrm{H}_{\mathrm{f}}{ }^{\circ}$ (products)- $\square \square \mathrm{H}_{\mathrm{f}}{ }^{\circ}$ (reactants)
All values for $\mathrm{H}_{\mathrm{f}}{ }^{\circ}$ can be found in Oxtoby's Appendix D (entries are per mole of substance)
a) $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \square 2 \mathrm{NO}_{2}(\mathrm{~g}) \square \mathrm{H}^{\circ}=2 \square \mathrm{H}_{\mathrm{f}}^{\circ}\left(\mathrm{NO}_{2}\right)-2 \square \mathrm{H}_{\mathrm{f}}^{\circ}(\mathrm{NO})-\square \mathrm{H}_{\mathrm{f}}{ }^{\circ}\left(\mathrm{O}_{2}\right)$
$=(2$ moles $) x(33.18 \mathrm{~kJ} /$ mole $)-(2$ moles $) \mathrm{x}(90.25 \mathrm{~kJ} /$ mole $)-(1$ mole) $x(0 \mathrm{~kJ} / \mathrm{mole})=-114.14 \mathrm{~kJ}$
b) $\mathrm{C}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \square \quad 2 \mathrm{CO}(\mathrm{g}) \quad \square \mathrm{H}^{\circ}=2 \square \mathrm{H}_{\mathrm{f}}^{\circ}(\mathrm{CO})-\square \mathrm{H}_{\mathrm{f}}{ }^{\circ}(\mathrm{C})-\square \mathrm{H}_{\mathrm{f}}^{\circ}\left(\mathrm{CO}_{2}\right)=$ (2 moles) $\mathrm{x}(-110.52 \mathrm{~kJ} / \mathrm{mole}$) - (1 mole)x($0 \mathrm{~kJ} / \mathrm{mole}$)- (1 mole $) x(-393.51 \mathrm{~kJ} / \mathrm{mole})=+172.47 \mathrm{~kJ}$
c) $2 \mathrm{NH}_{3}(\mathrm{~g})+(7 / 2) \mathrm{O}_{2}(\mathrm{~g}) \square 2 \mathrm{NO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad \square \mathrm{H}^{\circ}=2 \square \mathrm{H}_{\mathrm{f}}{ }^{\circ}\left(\mathrm{NO}_{2}\right)$ $+3 \square \mathrm{H}_{\mathrm{f}}{ }^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right)-2 \square \mathrm{H}_{\mathrm{f}}^{\circ}\left(\mathrm{NH}_{3}\right)-(7 / 2) \square \mathrm{H}_{\mathrm{f}}^{\circ}\left(\mathrm{O}_{2}\right)=(2 \mathrm{moles}) \mathrm{x}(33.18$ $\mathrm{kJ} /$ mole $)+(3$ moles $) \mathrm{x}(-241.82 \mathrm{~kJ} /$ mole $)-(2$ moles $) \mathrm{x}(-46.11$ $\mathrm{kJ} / \mathrm{mole})-((7 / 2) \mathrm{mole}) x(0 \mathrm{~kJ} / \mathrm{mole})=-566.88 \mathrm{~kJ}$
d) $\mathrm{C}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \square \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g}) \quad \square \mathrm{H}^{\circ}=\square \mathrm{H}_{\mathrm{f}}{ }^{\circ}(\mathrm{CO})+\square \mathrm{H}_{\mathrm{f}}{ }^{\circ}\left(\mathrm{H}_{2}\right)-\square \mathrm{H}_{\mathrm{f}}{ }^{\circ}$ (C) $-\square \mathrm{H}_{\mathrm{f}}{ }^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right)=(1 \mathrm{~mole}) \mathrm{x}(-110.52 \mathrm{~kJ} /$ mole $)+(1 \mathrm{~mole}) \mathrm{x}(0$ $\mathrm{kJ} /$ mole $)$)-(1 mole) $\mathrm{x}(0 \mathrm{~kJ} /$ mole $)-(1 \mathrm{~mole}) \mathrm{x}(-241.82 \mathrm{~kJ} /$ mole $)$ $=+131.30 \mathrm{~kJ}$

Problem 7.68

As in class we want to write the reaction at two different temperatures and then connect reactants and products at one temperature to reactants and products at the second temperature using heat capacities:

$$
\begin{array}{cccc}
\mathrm{SO}_{2}(\mathrm{~g})+(1 / 2) \mathrm{O}_{2}(\mathrm{~g}) \square & \mathrm{SO}_{3}(\mathrm{~g}) & \mathrm{T}_{1}=298.15 \mathrm{~K} & \square \mathrm{H}_{1}{ }^{\circ} \\
\text { प } \square \mathrm{H}_{\text {reactants }} & \uparrow \square \mathrm{H}_{\text {products }} & & \\
\mathrm{SO}_{2}(\mathrm{~g})+(1 / 2) \mathrm{O}_{2}(\mathrm{~g}) \square & \mathrm{SO}_{3}(\mathrm{~g}) & \mathrm{T}_{2}=500 \mathrm{~K} & \square \mathrm{H}_{2}{ }^{\circ}
\end{array}
$$

Since enthalpy changes are independent of path:

$$
\begin{aligned}
& \square \mathrm{H}_{1}{ }^{\circ}=\square \mathrm{H}_{\text {reactants }}+\square \mathrm{H}_{2}{ }^{\circ}+\square \mathrm{H}_{\text {products }} \\
& \square \mathrm{H}_{1}{ }^{\circ}=\square \mathrm{H}_{\mathrm{f}}{ }^{\circ}\left(\mathrm{SO}_{3}\right)-\square \mathrm{H}_{\mathrm{f}}{ }^{\circ}\left(\mathrm{SO}_{2}\right)-(1 / 2) \square \mathrm{H}_{\mathrm{f}}{ }^{\circ}\left(\mathrm{O}_{2}\right)=(1 \mathrm{~mole}) \mathrm{x}(-395.72 \\
& \mathrm{kJ} / \text { mole }) ~-~(1 \mathrm{~mole}) x(-296.83 \mathrm{~kJ} / \text { mole })-((1 / 2) \mathrm{mole}) x(0 \mathrm{~kJ} / \text { mole }) \\
& = \\
& \text {-98.89 kJ } \\
& \square \mathrm{H}_{\text {products }}=\mathrm{C}_{\mathrm{p}}\left(\mathrm{SO}_{3}\right)(298-500)=(1 \mathrm{~mole}) \times(50.7 \mathrm{~J} / \mathrm{mole}-\mathrm{K})(298-500) \\
& = \\
& \text {-10.24 kJ } \\
& \square \mathrm{H}_{\text {reactants }}=\mathrm{C}_{\mathrm{p}}\left(\mathrm{SO}_{2}\right)(500-298)+(1 / 2) \mathrm{C}_{\mathrm{p}}\left(\mathrm{O}_{2}\right)(500-298)=(1 \\
& \text { mole)x(39.9 J/mole-K)(500-298) + ((1/2)mole)x(29.4 J/mole- } \\
& \text { K) }(500-298)= \\
& +11.03 \mathrm{~kJ} \\
& \text { Using: } \quad \square \mathrm{H}_{1}{ }^{\circ}=\square \mathrm{H}_{\text {reactants }}+\square \mathrm{H}_{2}{ }^{\circ}+\square \mathrm{H}_{\text {products }} \\
& -98.89 \mathrm{~kJ}=+11.03 \mathrm{~kJ}+\square \mathrm{H}_{2}{ }^{\circ}-10.24 \mathrm{~kJ} \\
& \square \mathrm{H}_{2}{ }^{\circ}=-99.68 \mathrm{~kJ}
\end{aligned}
$$

Note that the effect of the heat capacity terms is to nearly cancel each other. In fact the enthalpy hardly changes over this T range because the heat capacities of the products and reactants are nearly equal. (Look carefully at the sign of DT in the calculations for the reactants and products!)

