Wall Collisions

\downarrow Vessel wall

Approach

Before Collision with wall
After Collision with wall

This cylinder contains all the atoms which will strike A in a time t (It also contains quite a few atoms that will not collide with the wall during \mathbf{t}).

$\vec{F}_{\text {atom }} /$ atom $=(-2 \mathrm{mc}) / \Delta t$
This is the force exerted ON an atom due to a single collision.
Since the momentum change for the wall is the negative of that for the atom:

One Particle Momentum Change for Elastic Wall Collision

Our problem now is to determine $\Delta \mathrm{t}$. There is no easy way to do this so we resort to a trick:

Then:
[(Momentum change) $/ \mathrm{sec}]=$
$\left(\Delta \overrightarrow{\mathbb{P}}_{\text {wall }} /\right.$ impact $) \times($ impacts $/ \mathrm{sec})=\left(\overrightarrow{\mathbb{P}}_{\text {wall }} / \mathrm{sec}\right)$

$$
\overrightarrow{\mathbf{F}}=(2 \mathrm{mc}) \times \mathbf{I}=\left(\Delta \overrightarrow{\mathbb{P}}_{\text {wall }} / \mathrm{sec}\right)
$$

Calculating I

Total atoms in collision cylinder $=(\mathbf{N} / \mathrm{V})($ Act $)$
$(1 / 3)(1 / 2)(N / V)(A c t)=(1 / 6)(N / V)(A c t)$
\uparrow Directions/axis
$\vec{F}_{\text {wall }}=[(2 \mathrm{mc})][(1 / 6)(\mathrm{N} / \mathrm{V})(\mathrm{Ac})]=(1 / 3)(\mathrm{N} / \mathrm{V}) \mathrm{mc}^{2} \mathrm{~A}$

$$
\begin{aligned}
& P=(1 / 3)(N / V) \mathrm{mc}^{2} \text { or } \rightarrow \\
& \mathrm{PV}=(2 / 3) \mathrm{N}\left[(1 / 2) \mathrm{mc}^{2}\right]
\end{aligned}
$$

Let $\mathbf{N}_{\mathbf{0}}=$ Avogadro's \#; $\mathbf{n}=\#$ moles in $\mathrm{V}=\mathbf{N} / \mathbf{N}_{\mathbf{0}}$ $\mathrm{PV}=\mathbf{N}\left(\mathrm{RT} / \mathbf{N}_{\mathbf{0}}\right)=(2 / 3) \mathrm{N}\left[(1 / 2) \mathrm{mc}^{\mathbf{2}}\right]$ or \rightarrow

$$
\frac{1}{2} \mathbf{m c} \mathbf{c}^{2}=\frac{3}{2}\left(\mathbf{R} / \mathbf{N}_{0}\right) \mathbf{T}
$$

$\mathbf{N}_{0}\left(\frac{1}{2} \mathrm{mc}^{2}\right)$ is the kinetic energy of one mole of gas atoms

Units:

PV ~ [pressure] [volume]

PV \sim force \times length

```
Bonus * Bonus * Bonus * Bonus * Bonus * Bonus
```

```
Bonus * Bonus * Bonus * Bonus * Bonus * Bonus
```


Typical Molecular Speeds

Understand that $\mathbf{c}=\sqrt{\mathbf{c}^{\mathbf{2}}}=\mathbf{c}_{\text {rms }}$ [Root Mean Square Speed]
$(1 / 2) \mathrm{mc}^{2}=(3 / 2) \mathrm{kT} \quad \rightarrow \quad \mathrm{c}=(3 \mathrm{kT} / \mathrm{m})^{1 / 2}$
$\mathrm{c}=(3 \mathrm{RT} / \mathrm{M})^{1 / 2} \quad \rightarrow \quad \mathrm{c}^{2}=3 \mathrm{RT} / \mathrm{M}$

$$
c^{2}=3 R T / M=7.47 \times 10^{6} \mathrm{Joules} / \mathrm{Kg}=7.47 \times 10^{6}(\mathrm{~m} / \mathrm{sec})^{2}
$$

```
c=2.73\times103 m/sec (Fast Moving Particle)
```

Why do Light and Heavy Gases Exert Same Pressure at Constant V,T, n (\# moles)? (p = nRT/V)
wall collision frequency/unit area $=$
$(1 / 6)(N / V)(A c t) /(A t)=(1 / 6)(N / V)$ c However, since

BUT momentum change per collision \sim mc, with

Two effects cancel since $\left(1 / \mathbf{m}^{1 / 2}\right) \times\left(m^{1 / 2}\right)$ is independent of m

Experimental Evidence for Kinetic Theory: Effusion

Put very small hole in box and measure \# of molecules coming through. If hole is really small, molecules won't know it's there and will collide with hole at same rate as they collide with the wall.

Efficion of Gases: The Movie

QuickTime ${ }^{\text {TM }}$ and a
Video decompressor are needed to see this picture.

> Note:
> \leftarrow Hole
> Must be very small!

Effusion of a Gas through a Small Hole

If hole area $=A$, rate at which molecules

$$
\text { leave }=(1 / 6)(N / V) A c=R
$$

$$
\frac{\mathbf{R}_{1}}{\mathbf{R}_{2}}=\left[\left(\frac{\mathbf{N}_{1}}{\mathbf{V}}\right) /\left(\frac{\mathbf{N}_{2}}{\mathbf{V}}\right)\right]\left(\frac{\mathbf{c}_{1}}{\mathbf{c}_{2}}\right)
$$

$$
\frac{\mathbf{R}_{1}}{\mathrm{R}_{2}}=\left(\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}\right)=\frac{\sqrt{\frac{3 \mathrm{kT}}{\mathrm{~m}_{1}}}}{\sqrt{\frac{3 \mathrm{kT}}{\mathrm{~m}_{2}}}}
$$

Find experimentally that light gases escape more quickly than heavy ones!

$$
\begin{gathered}
\text { Experimental Evidence for Kinetic Theory: } \\
\text { Heat Capacities }
\end{gathered}
$$

Two kinds: C_{p} (add heat at constant pressure) C_{v} (add heat at constant volume)

