Chemical Bonding

Hydrogen atom based atomic orbitals a.k.a. hydrogen atom wavefunctions: 1s, 2s, 2p, 3s, 3p, 3d,

 $\psi_{1s} = 1/(\pi)^{1/2}(1/a_0)^{3/2} \exp[-r/a_0], a_0 = Bohr Radius = 0.529 Angstroms$

Electron 74 (**x,y,z**) V **Nucleus** $r^2 = x^2 + y^2 + z^2$ X

Orbitals, Wavefunctions and Probabilities

The orbital or wavefunction is just a mathematical function that can have a **magnitude** and **sign** (e.g. + 0.1 or -0.2) at a given point r in space.

Probability of finding a 1s electron at a particular point in space is often not as interesting as finding the electron in a thin shell between r and r+dr.

Orbitals, Wavefunctions and Probabilities Probability of finding a 1s electron in thin shell between r and r+dr:

 $Prob(r,r+dr) \sim \psi_{1s} \psi_{1s} [r^2]dr$

Volume of shell of thickness dr:

$$dV = (4/3)\pi \left[(r)^3 + 3r^2 dr + 3r(dr)^2 + (dr)^3 - r^3 \right]$$

 $dV \approx (4\pi)[r^2 dr]$

 $[r >>> dr \rightarrow 3r^2 dr >>> 3r(dr)^2 + (dr)^3]$

 $\sigma_{1s} = C_1[\psi_{1s}(A) + \psi_{1s}(B)]$, Sigma 1s Bonding Molecular orbital. C_1 is a constant.

Note that probabilities for finding electron at some position in space scale like $[\sigma_{1s}]^2$ and $[\sigma_{1s}^*]^2$: $[\sigma_{1s}^*]^2 = \{C_2[\psi_{1s}(A) - \psi_{1s}(B)]\}^2 = (C_2)^2\{[\psi_{1s}(A)]^2 + [\psi_{1s}(B)]^2 - 2[\psi_{1s}(A)][\psi_{1s}(B)]\}$

"Non-interacting" part is result for large separation between nucleus A and B

 $[\sigma_{1s}]^{2} = \{C_{1}[\psi_{1s}(A) + \psi_{1s}(B)]\}^{2} = (C_{1})^{2}\{[\psi_{1s}(A)]^{2} + [\psi_{1s}(B)]^{2} + 2[\psi_{1s}(A)][\psi_{1s}(B)]\}$

Notational Detail

Oxtoby uses two different notations for orbitals in the 4th and 5th editions of the class text:

 σ_{1s} in the 4th edition becomes σ_{g1s} in the 5th edition

 σ_{1s}^* in the 4th edition becomes σ_{u1s}^* in the 5th edition

The addition of g and u provides some extra identification of the orbitals and is the one encountered in the professional literature.

g and u are from the German "gerade" and "ungerade"

Wave Functions	H ⁺ ₂	Electron Densities
$\psi_{1s}(\mathbf{A}) \qquad \sigma_{1s}^* = C_2 \left[\psi_{1s}^{\mathbf{A}} - \psi_{1s}^{\mathbf{B}}\right] + \mathbf{B}$	ANTIBONDING	$[\sigma_{1s}^*]^2$
A $-\psi_{1s}(\mathbf{B})$	region between nuclei A and B	$ \begin{array}{ccc} A & B \\ -2[\psi_{1s}(A)][\psi_{1s}(B)] \end{array} $
$\sigma_{1s} = C_1 \left[\psi_{1s}^A + \psi_{1s}^B \right]$	BONDING	+ 2[$\psi_{1s}(A)$][$\psi_{1s}(B)$] [σ_{1s}] ²
A B	nuclei A and B	A B
$\psi_{1s}(A) \qquad \psi_{1s}(B)$	NON-INTERACTING	$\frac{\psi^{2}(\mathbf{n.i.}) \sim [(\psi^{A})^{2} + (\psi^{B})^{2}]}{A B}$

CORRELATION DIAGRAM

Bonding for Second Row Diatomics: the Role of 2p Orbitals

Once the σ_{2s} , σ_{2s}^* molecular orbitals formed from the 2s atomic orbitals on each atom are filled (4 electrons, Be₂), we must consider the role of the 2p electrons (B₂ is first diatomic using 2p electrons).

There are 3 different sets of p orbitals $(2p_x, 2p_y, and 2p_z)$, all mutually perpendicular. If we choose the molecular diatomic axis to be the z axis (this is arbitrary), we have a picture like this:

