Chemical Bonding

Hydrogen atom based atomic orbitalls a.k.a. hydrogen atom wavefunctions: 1s, 2s, 2p, 3s, 3p, 3d,
$\square_{1 \mathrm{~s}}=1 /(\square)^{1 / 2}\left(1 / \mathbf{a}_{0}\right)^{3 / 2} \exp \left[-r / \mathbf{a}_{0}\right], \mathbf{a}_{0}=$ Bohr Radius $=0.529$ Angstroms

Orbitals, Wavefunctions and Probabilities

The orbital or wavefunction is just a mathematical function that can have a magnitude and sign (e.g. +0.1 or -0.2) at a given point r in space.

Probability of finding a 1s electron at a particular point in space is often not as interesting as finding the electron in a thin shell between r and $r+d r$.

Orbitals, Wavefunctions and Probabilities

Probability of finding a 1s electron in thin shell between r and $r+d r$:

```
Prob(r,r+dr) ~ }\mp@subsup{\square}{1s}{}\mp@subsup{\square}{1s}{}[\mp@subsup{\mathbf{r}}{}{2}]d
```

Volume of shell of thickness dr:

$$
\begin{gathered}
d V=(4 / 3) \square\left[(1)^{3}+3 r^{2} d r+3 r(d r)^{2}+(d r)^{3}-/^{3}\right] \\
{\left[r \ggg d r \square 3 r^{2} d r \ggg 3 r(d r)^{2}+(d r)^{3}\right]}
\end{gathered}
$$

Bonding in Diatomic Molecules such as H_{2}

$\square_{1 s}(A)=1 /(\square)^{1 / 2}\left(1 / a_{0}\right)^{3 / 2} \exp \left[-r_{1} / a_{0}\right]$, 1s orbital for atom A \bigcirc
Note the two orbitals are centered at different points in space.
$\square_{1 s}=C_{1}\left[\square_{1 s}(A)+\square_{1 s}(B)\right]$, Sigma 1s Bonding Molecular orbital. C_{1} is a constant.

Note that probabilities for finding electron at some position in space scale like $\left[\square_{1 s}\right]^{2}$ and $\left[\square_{1 s}{ }^{*}\right]^{2}$:
$\left[\square_{1 \mathrm{~s}}{ }^{*}\right]^{2}=\left\{\mathrm{C}_{2}\left[\square_{1 \mathrm{~s}}(\mathrm{~A})-\square_{1 \mathrm{~s}}(\mathrm{~B})\right]\right\}^{2}=$ $\left(\mathrm{C}_{2}\right)^{2}\left\{\left[\square_{1 \mathrm{~s}}(\mathrm{~A})\right]^{2}+\left[\square_{1 s}(\mathrm{~B})\right]^{2}-2\left[\square_{1 s}(\mathrm{~A})\right]\left[\square_{1 \mathrm{~s}}(\mathbb{B})\right]\right\}$
"Non-interacting" part is result for large separation between nucleus A and B

$$
\begin{aligned}
& {\left[\square_{1 s}\right]^{2}=\left\{C_{1}\left[\square_{1 s}(\mathbf{A})+\square_{1 s}(\mathbf{B})\right]\right\}^{2}=} \\
& \quad\left(\mathbf{C}_{1}\right)^{2}\left\{\left[\square_{1 s}(\mathbf{A})\right]^{2}+\left[\square_{1 s}(\mathbf{B})\right]^{2}+2\left[\square_{1 s}(\mathbb{A})\right]\left[\square_{1 s}(\mathbb{B})\right]\right\}
\end{aligned}
$$

Notational Detail

Oxtoby uses two different notations for orbitals in the 4th and 5 th editions of the class text:
$\square_{1 s}$ in the 4th edition becomes $\square_{\text {g1s }}$ in the 5th edition
$\square_{1 s}{ }^{*}$ in the 4 th edition becomes $\square_{\mathrm{u} 1 \mathrm{~s}}{ }^{*}$ in the 5 th edition

The addition of g and u provides some extra identification of the orbitals and is the one encountered in the professional literature.
g and u are from the German "gerade" and "ungerade"

H_{2} Molecular Orbitals

CORRELATION DIAGRAM

Z for $\mathrm{He}=\mathbf{2}$
He_{2}

He_{2} Molecular Orbitals

Bonding for Second Row Diatomics Involves the $\mathbf{n}=\mathbf{2}$ Atomic Shell

Lithium atomic configuration is $\mathbf{1 s} \mathbf{s}^{\mathbf{2}} \mathrm{s}^{\mathbf{1}}$
(Only the 2 s electron is a valence electron.)
L_{2} dimer has the configuration: $\left[\left(\square_{1 s}\right)^{2}\left(\square_{1 s} *\right)^{2}\right]\left(\square_{2 s}\right)^{2}=[K K]\left(\square_{2 s}\right)^{2}$
CORRELATION DIAGRAM
For $\mathrm{Li}_{2}\left(\mathrm{D}_{2 \mathrm{~s}}\right)^{2}$, Bond order $=$

Li_{2} Molecular Orbitals

Bonding for Second Row Diatomics: the Role of 2p Orbitals

Once the $\square_{2 s}, \square_{2 s} *$ molecular orbitals formed from the 2 s atomic orbitals on each atom are filled (4 electrons, Be_{2}), we must consider the role of the $2 p$ electrons (B_{2} is first diatomic using $2 p$ electrons).

There are $\mathbf{3}$ different sets of p orbitals ($\mathbf{2} p_{x}, \mathbf{2} p_{y}$, and $\mathbf{2} p_{z}$), all mutually perpendicular. If we choose the molecular diatomic axis to be the z axis (this is arbitrary), we have a picture like this:

