

Notational Detail

Oxtoby uses two different notations for orbitals in the 4th and 5th editions of the class text:

 σ_{2pz} in the 4th edition becomes σ_{g2pz} in the 5th edition

 σ_{2pz}^{*} in the 4th edition becomes σ_{u2pz}^{*} in the 5th edition

 π_{2px} in the 4th edition becomes π_{u2px} in the 5th edition

 π_{2px}^{*} in the 4th edition becomes π_{g2px}^{*} in the 5th edition

Molecular Orbitals of Homonuclear Diatomic Molecules

Mole- cule	# Valence Electrons	Valence Electron Configuration	Bond Order	Bond Length (Å)	Bond Energy (kJ/mole)
H ₂	2	$(\sigma_{1s})^2$	1	0.74	431
He ₂	4	$(\sigma_{1s})^2(\sigma_{1s}^*)^2$	0	52	.000008
Li ₂	2	$(\sigma_{2s})^2$	1	2.67	105
Be ₂	4	$(\sigma_{2s})^2(\sigma_{2s}^*)^2$	0	2.45	9
B ₂	6	$(\sigma_{2s})^2(\sigma_{2s}^*)^2(\pi_{2p}^*)^2$	1	1.59	289
C ₂	8	$(\sigma_{2s})^2(\sigma_{2s}^*)^2(\pi_{2p})^4$	2	1.24	599
N ₂	10	$(\sigma_{2s})^2(\sigma_{2s}^*)^2(\pi_{2p})^4(\sigma_{2pz}^*)^2$	3	1.10	942
02	12	$(\sigma_{2s})^2(\sigma_{2s}^*)^2(\sigma_{2p_z}^*)^2(\pi_{2p}^*)^2$	2	1.21	494
F ₂	14	$(\sigma_{2s})^2(\sigma_{2s}^*)^2(\sigma_{2pz}^*)^2(\pi_{2p}^*)^4(\pi_{2p}^*)^4$	1	1.41	154
Ne ₂	16	$(\sigma_{2s})^2(\sigma_{2s}^*)^2(\sigma_{2p_z}^*)^2(\pi_{2p}^*)^4(\pi_{2p}^*)^4(\sigma_{2p_z}^*)^2$	0	1	

Bonding in Polyatomic Molecules

Basically two ways to approach polyatomics.

First is to use **delocalized M.O.'s** where *e*⁻ are not confined to a single bond (region between 2 atoms) but can wander over 3 or more atoms. We will use this approach later for C bonding.

Second is to use **hybridization of atomic orbitals** and then use these to form localized (usually) bonds.

Localized BeH₂ orbitals:

BH₃ Fragment:

Overlap with H 1s to give 3 B-H bonds <u>in a plane</u> pointing at 120° with respect to each other: BH₃

 $2s + 2p_x + 2p_y + 2p_z = sp^3$ gives 4 hybrid orbitals which point to the corners of a tetrahedron. Angle between is 109°28' sp^3 [1/4 s, 3/4 p]. Tetrahedral hybrids.

4 H atoms have $4 \ge 1s \rightarrow 4$ valence e^{-1}

Geometry of carbon sp^3/H 1s Bonds in methane (CH₄):

sp³ hybridization on C leads to 4 bonds. CH_4 is a good example.

	Summary of Hybridization Results			
Example	Groups Attached to Center Atom	Hybrid	Geometry	
BeH ₂	2	sp	linear H-Be-H	
BH ₃	3	sp ²	trig. plane (120° H-B-H angle)	
CH ₄	4	sp ³	tetrahedral (109°28' H-C-H angles)	

Localized Bonds and Lone Pair Electrons

NH_3 3H, 1s (no choice) N: $1s^22s^22p^3$

This predicts 90° geometry –

Geometry of NH₃ found to be Trigonal Pyramidal

4 N sp³ orbitals combine with 3 1s H orbitals to give 3 sp³, 1s M.O.'s leaving one sp³ hybrid left

Of 5 valence *e* ⁻ in N, 2 go into one sp³ orbital, 3 go into other 3 sp³,s. (combined with H (1s))

One of the driving forces for the tetrahedral configuration is that it puts bonding and lone pair electron groups as far away from each other as possible.

Electron pair repulsion effect is largest for small central atoms like B, N, O.

As go to larger central atoms (e.g. S or metals) frequently find this effect not so large and start to get things closer to pure p orbital bonds (90° structures)

For example, H₂S has H-S-H angle of 92°.

 $H_2O:$ $2H 1s (2e^{-})$ $O 1s^22s^22p^4$ (6 valence e^{-}) $4 sp^3$ hybrids. Use $\underline{2}$ to make MO bonds with H 1s.

