
$2 p_{z}(A)=2 p_{z}(B)$
Atomic Orbitals of Atoms A,B

Molecular Orbitals
Bonding with 2 p Orbitals

Note: orbital is \square to bond (z) axis

Atomic Orbitals of Atoms A,B

Bondling with 2 p Orbitals (cont)

Notational Detail

Oxtoby uses two different notations for orbitals in the 4th and 5th editions of the class text:
$\square_{2 \mathrm{pz}}$ in the 4th edition becomes $\square_{\mathrm{g} 2 \mathrm{pz}}$ in the 5th edition
$\square_{2 \mathrm{pz}} *$ in the 4th edition becomes $\square_{\mathrm{u} 2 \mathrm{pz}} *$ in the 5 th edition
$\square_{2 \mathrm{px}}$ in the 4th edition becomes $\square_{\mathrm{u} 2 \mathrm{px}}$ in the 5th edition
$\square_{2 \mathrm{px}} *$ in the 4th edition becomes $\square_{\mathrm{g} 2 \mathrm{px}} *$ in the 5th edition

Molecular Orbitals of Homonuclear Diatomic Molecules

Molecule	\# Vallence Electrons	Valence Electron Configuration	Bond Order	Bond Length (A)	Bond Energy (kJ/mole)
H_{2}	2	$\left(\square_{15}\right)^{2}$	1	0.74	431
He_{2}	4	$\left(\mathrm{D}_{15}\right)^{2}\left(\mathrm{D}_{15}{ }^{*}\right)^{2}$	0	52	. 000008
Li_{2}	2	$\left(\square_{25}\right)^{2}$	1	2.67	105
Be_{2}	4	$\left(\square_{25}\right)^{2}\left(\square_{25}{ }^{*}\right)^{2}$	0	2.45	9
\mathbb{B}_{2}	6	$\left.\left(\square_{25}\right)^{2}\left(\square_{25}\right)^{*}\right)^{2}\left(\square_{L_{p}}\right)^{2} \quad \uparrow \uparrow$	1	1.59	289
C_{2}	8	$\left(\square_{25}\right)^{2}\left(\overline{(}_{2 s}^{*}\right)^{2}\left(\overline{(D}_{2 \mathrm{p}}\right)^{4}$	2	1.24	599
N_{2}	10	$\left(\square_{2 s}\right)^{2}\left(\square_{2 s}{ }^{*}\right)^{2}\left(\square_{2 p}\right)^{4}\left(\square_{2 p z}\right)^{2}$	3	1.10	942
O_{2}	12	$\left.\left(\square_{2 s}\right)^{2}\left(\square_{2 s}\right)^{*}\right)^{2}\left(\square_{2 p z}\right)^{2}\left(\square_{2 p}\right)^{4}\left(\square_{2 p}{ }^{*}\right)^{2} \quad \uparrow \uparrow$	2	1.21	494
F_{2}	14	$\left(\square_{2 s}\right)^{2}\left(\square_{2 s}{ }^{*}\right)^{2}\left(\square_{2 p z}\right)^{2}\left(\square_{2 p}\right)^{4}\left(\square_{2 p}{ }^{*}\right)^{4}$	1	1.41	154
Ne_{2}	16	$\left(\square_{2 s}\right)^{2}\left(\square_{2 s}{ }^{*}\right)^{2}\left(\square_{2 p_{z}}\right)^{2}\left(\square_{2 p}\right)^{4}\left(\square_{2 p}{ }^{*}\right)^{4}\left(\square_{2 p_{z}}{ }^{*}\right)^{2}$	0	-	-

Bonding in Polyatomic Molecules

Basically two ways to approach polyatomics.
First is to use delocalized M.O.'s where e - are not confined to a single bond (region between 2 atoms) but can wander over 3 or more atoms. We will use this approach later for \mathbf{C} bonding.

Second is to use hybridization of atomic orbitals and then use these to form localized (usually) bonds.

Localized BeH_{2} orbitals:

H 1s $+\left(\mathrm{sp}^{-}\right)$

H
Be

H 1s + (sp^{+})

Be
H

$\mathbf{B H}_{3}$ Fragment:

Overlap with H 1s to give $3 \mathrm{~B}-\mathrm{H}$ bonds in ฉ plane pointing at 120° with respect to each other: BH_{3}

$2 s+2 p_{x}+2 p_{y}+2 p_{z} \equiv s p^{3}$ gives 4 hybrid orbitals which point to the corners of a tetrahedron. Angle between is $109^{\circ} \mathbf{2 8}^{\prime}$ $s^{3}{ }^{3}[1 / 4 \mathrm{~s}, 3 / 4 \mathrm{p}]$. Tetrahedral hybrids.

4 H atoms have $4 \times 1 \mathrm{~s} \square 4$ valence $e^{\text {- }}$

Geometry of carrbon sp ${ }^{3} / \mathrm{H}$ 1s Bonds in methane $\left(\mathrm{CH}_{4}\right)$:

sp 3 hybridization on C leads to 4 bonds. CH_{4} is a good example.

Summary of Hybridization Results

Example	Groups Attached to Center Atom	Hybrid	Geometry
BeH_{2}	2	sp	linear $\mathrm{H}-\mathrm{Be}-\mathrm{H}$
BH_{3}	3	sp ${ }^{2}$	trig. plane ($120^{\circ} \mathrm{H}-\mathrm{B}-\mathrm{H}$ angle)
CH_{4}	4	sp ${ }^{3}$	tetrahedral (109 ${ }^{\circ} 28^{\prime}$ H-C-H angles)

Localized Bonds and Lone Pair Electrons

$\mathbf{N H}_{\mathbf{3}} \mathbf{3 H}, \mathbf{1 s}$ (no choice) $\mathrm{N}: \mathbf{1 s}^{\mathbf{2}} \mathbf{2} \mathrm{s}^{\mathbf{2}} \mathbf{2} \mathbf{p}^{\mathbf{3}}$

This predicts 90° geometry \longrightarrow

Geometry of $\mathbf{N H}_{3}$ found to be Trigonal Pyramidal

4 N sp 3 orbitals combine with 3 1s H orbitals to give 3 sp 3, 1s M.O.'s leaving one $\mathbf{s p}^{\mathbf{3}}$ hybrid left

Of 5 valence $e-$ in $\mathbf{N}, 2$ go into one sp ${ }^{3}$ orbital, 3 go into other $3 \mathbf{s p}^{3}$, s. (combined with H (1s))

One of the driving forces for the tetrahedral configuration is that it puts bonding and lone pair electron groups as far away from each other as possible.

Electron pair repulsion effect is largest for small central atoms like B, N, O.

As go to larger central atoms (e.g. S or metals) frequently find this effect not so large and start to get things closer to pure p orbital bonds (90° structures)

For example, $\mathbf{H}_{2} \mathrm{~S}$ has $\mathbf{H - S}-\mathrm{H}$ angle of $\mathbf{9 2}^{\mathbf{}}$.

$\mathrm{H}_{2} \mathrm{O}: \quad 2 \mathrm{H} 1 \mathrm{~s}\left(2 e^{-}\right) \quad \mathrm{O} 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{4}$ (6 valence e^{-})

$4 \mathbf{s p}^{\mathbf{3}}$ hybrids. Use $\underline{2}$ to make MO bonds with H 1s.

