Chemical Kinetics

The Binary Collision Model

Must actually have a hydrogen molecule bump into a chlorine molecule to have chemistry occur. Reaction during such a collision might look like the following picture:

Collision Frequency

Real gases consist of particles of finite size that bump into each other at some finite rate.

Assume first that the red molecule has a constant speed \mathbf{C} and the green ones are standing still.

If a green molecule has some piece in this volume \square Collision!

\square_{A} is the radius of molecule A, \square_{B} the radius of \mathbb{B}

There is one subtlety. In deriving z, we assumed the red molecule flew through a cloud of motionless green ones at a speed of C.

In reality, of course, all the molecules are moving.
$<u_{\text {rel }}>$ is the mean speed of molecule A with respect to molecule B.

Where $\square=m_{A} m_{B} /\left(m_{A}+m_{B}\right)$
\square is called the reduced mass and can be thought of as a kind of (geometric) average of the masses of A,B.

Bonus * Bonus * Bonus * Bonus * Bonus * Bonus
$\mathbf{z} \mathbf{N}_{\mathrm{A}}=\square\left(\square_{\mathbf{A B}}\right)^{2}<\mathrm{u}_{\text {rel }}>\left(\mathbf{N}_{\mathbf{B}} / \mathrm{V}\right) \mathbf{N}_{\mathrm{A}}$
By convention, because we don't want our results to depend on the size or volume V of our experimental apparatus, we define $Z_{A B}$:
$Z_{A B}$ is the total number of collisions between all A and all B Molecules per liter (or per ml depending on units used for \mathbf{V}).

Note that $Z_{A B}$ depends on 4 things:

A Subtlety that arises when $A=B$

When we multiply z by N_{A} we count the collisions of all A molecules with all B molecules. When $A=B$ (all collisions are of A with other A's) this turns out to count all collisions twice!

Thus, $\left\langle\mathrm{u}_{\mathrm{rel}}\right\rangle=(2)^{1 / 2}\left(8 \mathrm{kT} / \square \mathrm{m}_{\mathrm{A}}\right)^{1 / 2}$
$\left(8 \mathrm{kT} / \square \mathrm{m}_{\mathrm{A}}\right)^{1 / 2}$ is the average speed of a molecule even as $\left(3 \mathrm{kT} / \mathrm{m}_{\mathrm{A}}\right)^{1 / 2}$ is the root mean square speed of a molecule This gives:

$$
\mathbb{Z}_{\mathrm{AA}}=(1 / 2)(2)^{1 / 2} \square\left(\square_{\mathrm{AA}}\right)^{2}\left(8 \mathrm{~K} T / \square \mathrm{m}_{\mathrm{A}}\right)^{1 / 2}\left(\mathrm{~N}_{\mathrm{A}} / \mathrm{V}\right)^{2}
$$

Bonus * Bonus * Bonus * Bonus * Bonus * Bonus

Reaction Energy Barriers

As a result, we are not interested in the total collision rate $Z_{A B}$, but rather how much energy is available in the collision which in turn depends on the relative speed of A, B approach.

Even knowing how \mathbb{Z} depends on energy is not sufficient. We must also know the probability of reaction at a given energy.

A very simple model for \mathbb{P}_{R} is the "all or nothing" model where $\mathbb{P}_{\mathbb{R}}(\mathbb{E})=0, \mathbb{E}<\mathbb{E}_{\mathrm{A}}$ and $\mathbb{P}_{\mathbb{R}}(\mathbb{E})=\mathbb{1}, \mathbb{E} \geq \mathbb{E}_{\mathrm{A}}$.

By convention P_{R} is associated with the collision "cross section" $\left(\square_{A B}\right)^{2}$:

The reaction cross section, $\left(\square_{R}\right)^{2}$, is the product of the reaction probability, $\mathbb{P}_{\mathbb{R}}$, at a given energy and the collision cross section, $\left(\square_{\mathrm{AB}}\right)^{2}$.

Reaction ${ }^{66}$ Cross Section" $\square_{\mathbb{R}}{ }^{2}$
 A + B \square Products
 All or Nothing Model

■
$\mathbb{P}_{\mathbf{R}}(\mathbb{E})=0$ when $\mathbb{E} \leq \mathbb{E}_{\mathrm{A}}$
$\mathbb{P}_{\mathbf{R}}(\mathbb{E})=\left(\mathbb{1}-\mathbb{E}_{\mathrm{A}} / \mathbb{E}\right)$ when $\mathbb{E}>\mathbb{E}_{\mathrm{A}}$

Reaction Cross Section $A+B \rightarrow$ Product

Arrhenius Model

