Chemical Kinetics

The Binary Collision Model

Must actually have a hydrogen molecule bump into a chlorine molecule to have chemistry occur. Reaction during such a collision might look like the following picture:

Collision Frequency

Real gases consist of particles of finite size that bump into each other at some finite rate.

Assume first that the red molecule has a constant speed C and the green ones are standing still.

If a green molecule has some piece in this volume→Collision!

σ_{A} is the radius of molecule A, σ_{B} the radius of B

There is one subtlety. In deriving z, we assumed the red molecule flew through a cloud of motionless green ones at a speed of C.

In reality, of course, all the molecules are moving.

 $\langle u_{rel} \rangle$ is the mean speed of molecule A with respect to molecule B.

Where $\mu = m_A m_B / (m_A + m_B)$

μ is called the <u>reduced mass</u> and can be thought of as a kind of (geometric) average of the masses of A,B.

Bonus * Bonus * Bonus * Bonus * Bonus * Bonus

 $zN_A = \pi(\sigma_{AB})^2 \langle u_{rel} \rangle (N_B/V)N_A$

By convention, because we don't want our results to depend on the size or volume V of our experimental apparatus, we define Z_{AB} :

 Z_{AB} is the total number of collisions between <u>all</u> A and <u>all</u> B Molecules <u>per</u> liter (or per ml depending on units used for V).

Note that Z_{AB} depends on 4 things:

A Subtlety that arises when A=B

When we multiply z by N_A we count the collisions of all A molecules with all B molecules. When A=B (all collisions are of A with other A's) this turns out to count all collisions twice!

Thus, $\langle u_{rel} \rangle = (2)^{1/2} (8kT/\pi m_A)^{1/2}$

 $(8kT/\pi m_A)^{1/2}$ is the average speed of a molecule even as $(3kT/m_A)^{1/2}$ is the root mean square speed of a molecule This gives:

$$Z_{AA} = (1/2) \ (2)^{1/2} \ \pi(\sigma_{AA})^2 \ (8kT/\pi m_A)^{1/2} \ (N_A/V)^2$$

Bonus * Bonus * Bonus * Bonus * Bonus * Bonus

As a result, we are not interested in the total collision rate Z_{AB} , but rather how much energy is available in the collision which in turn depends on the relative speed of A,B approach.

Even knowing how Z depends on energy is not sufficient. We must also know the probability of reaction at a given energy. A very simple model for P_R is the "all or nothing" model where $P_R(E)=0$, $E < E_A$ and $P_R(E)=1$, $E \ge E_A$.

By convention P_R is associated with the collision "cross section" $(\sigma_{AB})^2$:

The reaction cross section, $(\sigma_R)^2$, is the product of the reaction probability, P_R , at a given energy and the collision cross section, $(\sigma_{AB})^2$.

 $P_{R}(E) = 0 \text{ when } E \leq E_{A}$ $P_{R}(E) = (1-E_{A}/E) \text{ when } E > E_{A}$

$$\sigma_{\rm R}^2 = P_{\rm R} \sigma_{\rm AB}^2$$

Reaction "Cross Section"
$$\sigma_R^2$$

A + B \rightarrow Products
All or Nothing Model

