Suppose you have $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$from added $\mathrm{HCl}=0.1 \mathrm{M}=10^{-1} \mathrm{M}$
Then $\left[10{ }^{-1}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}$

In pure $\mathrm{H}_{2} \mathrm{O},\left[\mathrm{OH}^{-}\right]=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathbf{7}}$, but

Weak Acidls and Bases
Add acetic acid to $\mathrm{H}_{2} \mathrm{O}$:

$$
\mathbf{K}=\mathbf{K}_{\mathrm{a}}
$$

What are $\left[\mathrm{CH}_{3} \mathrm{COOH}\right],\left[\mathrm{H}_{3} \mathrm{O}^{+}\right],\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]$?

If we ignore $\mathrm{H}_{3} \mathrm{O}^{+}$from $\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \square \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}-\square$

$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \square \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$

$$
\begin{aligned}
& \square \text { have }\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right] \\
& \left\{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \text {from } \mathrm{H}_{2} \mathrm{O} \square \mathbf{1 0}^{-7}\right\} \\
& \text { Let } \mathrm{C}_{0}=\text { initial }\left[\mathrm{CH}_{3} \mathrm{COOH}\right] \equiv[\mathrm{HOAc}]
\end{aligned}
$$

$$
-\mathbf{K}=\frac{\left[\mathbf{H}_{3} \mathbf{O}^{+}\right]^{2}}{\mathbf{C}_{\mathbf{o}}\left[\left[\mathbf{H}_{\mathbf{3}}^{\mathbf{3}}\right]\right.}=1.85 \square 10^{\square 5}
$$

 far to left!

Guess, $[\mathrm{HOAc}] \square \mathrm{C}_{0}$, since $\mathrm{K}=\mathrm{K}_{\mathrm{a}} \lll 1\left(\mathbb{(1)}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \lll \mathrm{C}_{0}\right)$)

$$
\mathbf{K}=\frac{\left[\mathbf{H}_{3} \mathbf{O}^{+}\right]^{2}}{\mathbf{C}_{\mathbf{o}}\left[\left[\mathbf{H}_{5} \mathbf{G}^{+}\right]\right.}=1.85 \square 10^{\square 5} \longrightarrow\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\sqrt{\mathbf{K} \mathbf{C}_{\mathbf{o}}}
$$

$\mathrm{C}_{0}-\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.9957 \mathrm{M} \square \mathrm{C}_{0}=1 \mathrm{M}(\mathbf{0 . 4 3 \%}$ error)
Example : $\mathrm{C}_{\mathrm{o}}=0.01 \mathrm{M} \square\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=4.3 \square 10^{-4}$

$$
\begin{gathered}
\mathrm{C}_{0}-\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10 \square 10^{-4}-1.36 \square 10^{-4}=8.64 \square 10^{-4} \\
\text { vs } \mathrm{C}_{0}=10 \square 10^{-4}(13.6 \% \text { error!!) }
\end{gathered}
$$

*** The approximation that [HOAc] $\square \mathrm{C}_{0}$ is good only for smalll \mathbb{K}_{a}, large \mathbb{C}_{0}.

Note: In all cases $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \gg 10^{-7} \quad$ Thus, OK to neglect $\mathrm{H}_{3} \mathrm{O}^{+}$from $\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \quad \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$

Could obtain an exact solution by solving a quadratic:

Such equations are trivial to solve with a modern graphing calculator.

$$
\mathbf{K}_{\mathrm{b}}=\frac{\left[\mathbf{C H}_{3} \mathbf{N H}_{3}{ }^{+}\right]\left[\mathbf{O H}^{\square}\right]}{\left[\mathbf{C H}_{3} \mathbf{N H}_{2}\right]}=5.0 \square 10^{[\mathrm{A}}
$$

Take $\left[\mathrm{OH}^{-}\right] \gg 10^{-7}$ (ignore hydrolysis of $\left.\mathrm{H}_{2} \mathrm{O}\right) \square$ $\left[\mathrm{OH}^{-}\right]=\left[\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}\right]$
(Stoichiometry)
Let initial concentration $\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\right]=\mathrm{C}_{0}=0.1$
First Approximation :
$\left[\mathrm{OH}^{-}\right]=\left[\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}\right]=\mathrm{x}_{1}$
$\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\right]=\mathrm{C}_{0}-\mathrm{x}_{1}$,
Assume $\mathrm{x}_{1} \ll \mathrm{C}_{0} \square$

$$
x_{1}=7.1 \square 10^{-3} \quad C_{0}-x_{1}=(100-7.1) \square 10^{-3}
$$

$\mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O} \square \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}+\mathrm{OH}^{-}$(weak base)
$\mathrm{C}_{0}-\mathrm{x}_{1} \square \mathrm{C}_{0} \quad \mathrm{x}_{1} \quad \mathrm{x}_{1}$
\% error in taking $C_{0}-x_{1}=C_{0}$ is thus $\frac{7.1}{100} \square 100=7.1 \%$
Second Approximation :
$\left[\mathrm{OH}^{-}\right]=\left[\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}\right]=\mathrm{x}_{\mathbf{2}}$ (unknown)

$$
\mathbf{K}_{\mathbf{b}}=\frac{\left(\mathbf{x}_{2}\right)^{2}}{\left(\mathbf{C}_{\mathbf{0}} \square \mathbf{x}_{1}\right)}=\frac{\left(\mathbf{x}_{2}\right)^{2}}{92.9 \square 10^{\square 3}}
$$

$\left(x_{2}\right)^{2}=\left(92.9 \square 10^{-3}\right)\left(5.0 \square 10^{-4}\right)=46.45 \square 10^{-6}$

Value we chose was only offi by 0.3 out of 93.2 (about 0.3%)

Try further iterations (x_{3}) and will find no change in values to three significant figures.

Hydrolysis

$\mathrm{HOAc}+\mathrm{H}_{2} \mathrm{O} \square \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OAc}^{-} \quad \mathrm{K}_{\mathrm{a}}=1.85 \square 10^{-5}$
$\mathrm{HOAc}=\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{OAc}^{-}=\mathrm{CH}_{3} \mathrm{COO}^{-}$
HOAc is an acid, therefore OAc- is a (conjugate) base:
Add NaOAc to $\mathrm{H}_{2} \mathrm{O}$, which dissociates completely to Na^{+}, $\mathrm{OAc}{ }^{-}$

$$
\text { Multiply } K_{h} \text { by } 1=\frac{\left[\mathbf{H}_{3} \mathbf{O}^{+}\right]}{\left[\mathbf{H}_{3} \mathbf{O}^{+}\right]}
$$

$\mathrm{K}_{\mathrm{a}}=\left[\mathrm{OAc}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] /[\mathrm{HOAc}]$ is the ionization constant for the reaction:
$\mathrm{HOAc}+\mathrm{H}_{2} \mathrm{O}=\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OAc}^{-}$

Note: K_{h} is very small, indicating that little $O A c^{-}$combines With $\mathrm{H}_{2} \mathrm{O}$ to form HOAc
Since $K_{h}=K_{w} / K_{a}$, the smaller K_{a} (weaker the acid) the Larger K_{h} (or $\mathrm{OAc}{ }^{\prime-}$ is more extensively hydrolyzed)

The relative strengths of some acids and their conjugate bases.

$$
\begin{gathered}
p K_{a}= \\
-\log _{10}\left(K_{a}\right)
\end{gathered}
$$

Buffer Solutions

Consider acetic acid: $\mathrm{HOAc}+\mathrm{H}_{2} \mathrm{O} \square \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OAc}^{-}$ $\mathrm{HOAc}=\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{OAc}^{-}=\mathrm{CH}_{3} \mathrm{COO}^{-}$
$[\mathrm{HOAc}]=[\mathrm{HOAc}]_{0}$ (initial concentration HOAc)
e.g., add 0.70 mole of HOAc to make 1 liter of solution:

Now suppose add 0.60 moles NaOAc , which dissociates completely to $\mathrm{Na}^{+}, \mathrm{OAc}^{-}$

First, look at $\mathrm{HOAc}+\mathrm{H}_{2} \mathrm{O} \square \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OAc}^{-}$

$$
\begin{aligned}
& \text { How keep } K_{\mathrm{a}}=1.85 \times 10^{-5} \text { when } \\
& \text { throw in all of this OAc }{ }^{-?}
\end{aligned}
$$

This just uses up $\mathrm{H}_{3} \mathrm{O}^{+}$that came from ionization of HOAc, thereby forcing [HOAc] closer to $[\mathrm{HOAc}]_{0}$!!

Inverse teeter-totter effect:

> Material flow $\mathrm{HOAC}+\mathrm{H}_{2} \mathrm{O}=\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OAc}^{-}$

Now, look at: $\mathrm{OAc}^{-}+\mathrm{H}_{2} \mathrm{O} \square \mathrm{HOAc}+\mathrm{OH}^{-}$
Very little OH^{-}made this way (lose little OAc^{-}and make little HOAc) since:

So when put 0.6 moles OAc^{-}in a liter of pure water have $\left[\mathrm{OAc}^{-}\right]=\left[\mathrm{OAc}^{-}\right]_{0}=0.6 \mathrm{M}$

How to keep $\mathrm{K}_{\mathrm{h}}=\left[\mathrm{HOAc}^{2}\right]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{OAc}^{-}\right]=$ $5.4 \square 10^{-10}$ when [HOAc] is large?

Result is to force OAc ${ }^{-}$even closer to its initial value $\left[\mathrm{OAc}^{-}\right]_{0}=0.60 \mathrm{M}$

$$
\begin{aligned}
& \text { Material flow } \\
& \mathrm{OAc}^{-}+\mathrm{H}_{2} \mathrm{O}=\mathrm{HOAc}+\mathrm{OH}^{-}
\end{aligned}
$$

Addition of large amounts of a weak acid and its conjugate base to the same solution nullifies both the ionization of the acid and the hydrolysis of the base!!

$\mathrm{K}_{\mathrm{a}}=\left[\mathrm{OAc}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] /[\mathrm{HOAc}]=1.85 \square 10{ }^{-5}$

$$
\mathrm{K}_{\mathrm{h}}=\left[\mathrm{HOAc}^{2}\right]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{OAc}^{-}\right]=5.4 \square 10^{-10}
$$

$\left[\mathrm{OAc}^{-}\right] \square 0.6 \mathrm{M}$ and $[\mathrm{HOAc}] \square 0.7 \mathrm{M}$
$\left.\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=2.185 \times 10^{-5} \mathrm{M}\right\}$ This result is accurate to 4 significant figures (gives same result as solving quadratic to this accuracy)!

A solution containing substantial amounts of a weak acid and its conjugate base is known as a buffer solution.

Thus, have $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\{[$acid $] /[$salt $]\} \mathrm{K}_{\mathrm{a}}$
Depends only on K_{a} and the ratio of [acid] to [salt]

Example: 1 liter of 0.25 M HCl , add 0.600 moles of $\mathrm{NaOAc}(\mathrm{s})$ Assume no volume change occurs upon addition of sall.

Find [OAc ${ }^{-}$], $[\mathrm{HOAc}],\left[\mathrm{H}_{3} \mathrm{O}^{+}\right],\left[\mathrm{OH}^{-}\right]$
$\mathrm{NaOAc} \square \mathrm{Na}^{+}+\mathrm{OAc}^{-} \quad \mathrm{H}_{2} \mathrm{O}+\mathrm{HCl} \square \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{OAc}^{\square}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{[\mathrm{HOAc}]}=\mathbf{1 . 8 5} \square \mathbf{1 0}^{\square 5}
$$

Recognizing a buffer when you see it. Not always an easy task.

Equation far to the right

Buffer conditions!
$\left[\mathrm{OAc}^{-}\right]=.350$
$[\mathrm{HOAc}]=.250$

