Suppose you have $[H_3O^+]$ from added HCl = 0.1 M = 10⁻¹ M

Then $[10^{-1}][OH^{-1}] = 10^{-14}$

In pure H_2O , $[OH^-] = [H_3O^+] = 10^{-7}$, **but**

Weak Acids and Bases

Add acetic acid to H₂O:

What are $[CH_3COOH]$, $[H_3O^+]$, $[CH_3COO^-]$?

$$\mathbf{K} = \frac{[\mathbf{H}_{3}\mathbf{O}^{+}]^{2}}{\mathbf{C}_{0} - [\mathbf{H}_{3}\mathbf{O}^{+}]} = 1.85 \times 10^{-5} \qquad \qquad \mathbf{[H}_{3}\mathbf{O}^{+}] = \sqrt{\mathbf{K}\mathbf{C}_{0}}$$

$$C_o - [H_3O^+] = 0.9957 \text{ M} \approx C_o = 1 \text{ M} (0.43\% \text{ error})$$

Example : $C_0 = 0.01 \text{ M} \rightarrow [H_3O^+] = 4.3 \times 10^{-4}$

 $C_o - [H_3O^+] = 10 \times 10^{-4} - 1.36 \times 10^{-4} = 8.64 \times 10^{-4}$ vs $C_o = 10 \times 10^{-4} (13.6\% \text{ error!!})$ * * * The approximation that [HOAc] \cong C_o is good only for small K_a, large C_o.

Note: In all cases $[H_3O^+] \gg 10^{-7}$ Thus, OK to neglect H_3O^+ from $H_2O + H_2O \rightarrow H_3O^+ + OH^-$

Could obtain an exact solution by solving a quadratic:

Such equations are trivial to solve with a modern graphing calculator.

A powerful, approximate alternative method:

$\mathbf{K}_{\mathbf{b}} = \frac{[\mathbf{CH}_{3}\mathbf{NH}_{3}^{+}][\mathbf{OH}^{-}]}{[\mathbf{CH}_{3}\mathbf{NH}_{2}]} = 5.0 \times 10^{-4}$

Method of Successive Approximations

Take [OH⁻]>>10⁻⁷ (ignore hydrolysis of H₂O)→ [OH⁻]=[CH₃NH₃⁺]

(Stoichiometry)

Let initial concentration $[CH_3NH_2] = C_0 = 0.1$

First Approximation : $[OH^-] = [CH_3NH_3^+] = x_1$

 $[CH_3NH_2] = C_o - x_1,$ Assume $x_1 \ll C_o \rightarrow$ $x_1 = 7.1 \times 10^{-3}$ $C_o - x_1 = (100 - 7.1) \times 10^{-3}$
 $CH_3NH_2 + H_2O \rightarrow CH_3NH_3^+ + OH^-$ (weak base)

 $C_o - x_1 \approx C_o$ x_1
 $x_1 = C_o$ $x_1 = C_o$
 $x_1 = C_o$ <

$$\mathbf{K}_{\mathbf{b}} = \frac{(\mathbf{x}_2)^2}{(\mathbf{C}_{\mathbf{o}} - \mathbf{x}_1)} = \frac{(\mathbf{x}_2)^2}{92.9 \times 10^{-3}}$$

 $(x_2)^2 = (92.9 \times 10^{-3})(5.0 \times 10^{-4}) = 46.45 \times 10^{-6}$

Value we chose was only off by 0.3 out of 93.2 (about 0.3%)

Try further iterations (x₃) and will find no change in values to three significant figures.

Hydrolysis

HOAc + $H_2O \rightarrow H_3O^+ + OAc^ K_a = 1.85 \times 10^{-5}$

HOAc=CH₃COOH, OAc⁻=CH₃COO⁻

HOAc is an acid, therefore OAc⁻ is a (conjugate) base:

Add NaOAc to H₂O, which dissociates completely to Na⁺, OAc⁻

 $K_a = [OAc^{-}][H_3O^{+}]/[HOAc]$ is the ionization constant for the reaction:

 $HOAc + H_2O = H_3O^+ + OAc^-$

Note: K_h is very small, indicating that little OAc ⁻ combines With H₂O to form HOAc

Since $K_h = K_w/K_a$, the smaller K_a (weaker the acid) the Larger K_h (or OAc⁻ is more extensively hydrolyzed)

The relative strengths of some acids and their conjugate bases.

Buffer Solutions

Consider acetic acid: HOAc + $H_2O \rightarrow H_3O^+ + OAc^-$ HOAc=CH₃COOH, OAc⁻ = CH₃COO⁻

[HOAc] = [HOAc]_o (initial concentration HOAc) e.g., add 0.70 mole of HOAc to make 1 liter of solution:

Now suppose add 0.60 moles NaOAc, which dissociates completely to Na⁺, OAc⁻

First, look at HOAc + $H_2O \rightarrow H_3O^+ + OAc^-$

How keep K_a=1.85x10⁻⁵ when throw in all of this OAc⁻?

This just uses up H_3O^+ that came from ionization of HOAc, thereby forcing [HOAc] closer to $[HOAc]_o !!$

Now, look at: $OAc^- + H_2O \rightarrow HOAc + OH^-$

Very little OH⁻ made this way (lose little OAc⁻ and make little HOAc) since:

So when put 0.6 moles OAc⁻ in a liter of pure water have $[OAc^{-}]=[OAc^{-}]_{o}=0.6$ M

How to keep $K_h = [HOAc] [OH^-] / [OAc^-] = 5.4 \times 10^{-10}$ when [HOAc] is large?

Result is to force OAc⁻ even closer to its initial value $[OAc^{-}]_{0} = 0.60$ M

Addition of large amounts of a weak acid and its conjugate base to the same solution nullifies both the ionization of the acid and the hydrolysis of the base!!

 $K_a = [OAc^{-1}] [H_3O^{+1}] / [HOAc] = 1.85 \times 10^{-5}$ $K_h = [HOAc][OH^{-1}] / [OAc^{-1}] = 5.4 \times 10^{-10}$ $[OAc^{-1}] \approx 0.6 M and [HOAc] \approx 0.7 M$ [H₃O⁺]=2.185x10⁻⁵ M} This result is accurate to 4 significant figures (gives same result as solving quadratic to this accuracy)!

A solution containing substantial amounts of a weak acid and its conjugate base is known as a buffer solution.

Thus, have $[H_3O^+] = \{[acid]/[salt]\} K_a$ Depends only on K_a and the **ratio** of [acid] to [salt] **Example: 1 liter of 0.25 M HCl, add 0.600 moles of NaOAc(s)** Assume no volume change occurs upon addition of salt.

Find $[OAc^{-}]$, [HOAc], $[H_{3}O^{+}]$, $[OH^{-}]$

NaOAc \rightarrow Na⁺ + OAc ⁻ H_2O + HCl \rightarrow H_3O^+ + Cl⁻

Recognizing a buffer when you see it. Not always an easy task.

Buffer conditions!

$$[OAc^{-}] = .350$$

[HOAc] = .250