Clamping of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$by a buffer solution

1) Add $\mathbf{1} \mathbf{~ m l}$ of $\mathbf{1} \mathbf{~ M ~ H C l}$ to $\mathbf{1}$ liter of pure $\mathbf{H}_{2} \mathrm{O}$:
2) Now add 1 ml of 1 M HCl to one liter of solution containing
0.7 moles of HOAc and 0.6 moles of NaOAc.

Remember, this is a buffer, so [HOAc] 0.7M and [OAc $\left.{ }^{-1}\right] 0.6 \mathrm{M}$

Max change in HOAc occurs if all H^{+}added reacts with OAc^{-}
— HOAc: Reaction stoichiometry is as follows:

$[\mathrm{HOAc}]=0.701$ and $\left[\mathrm{OAc}^{-}\right]=0.599$

New $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=2.17 \square 10^{-5}$
" No " change in $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right.$] when buffered!
If not buffiered, get 10^{4} change in $\mathrm{H}_{3} \mathrm{O}^{+}$concentration!!
"Physically" the H^{+}is being "stored" as undissociated HOAc:

If add OH^{-}also find pH does not change because the OH^{-}reacts with HOAc to give $\mathrm{H}_{2} \mathrm{O}$ and OAc ${ }^{-}$!

Buffered: small change in $\mathbf{p H}$ compared to unbuffered.
Higher buffer concentration resists $\mathbf{p H}$ changes more effectively.

100.0 mL of 0.1000 m HCl titrated with 0.1000 m NaOH .

Titration of a strong acid by a strong base.

Titration Curve for aWeak Acid HA (red curve/points) $\mathrm{HA}+\mathrm{OH}^{-} \square \mathrm{H}_{2} \mathrm{O}+\mathrm{A}^{-}$

Mix of HA
and A^{-}in buffer region

Mostly HA at start

Indicators

Dye molecules whose color changes with $\mathbf{p H}$ or $\left[\mathrm{H}^{+}\right]$. Useful way to follow pH changes.
$\mathrm{HIn}+\mathrm{H}_{2} \mathrm{O} \square \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{In}^{-} \quad$ (Indicators are themselves weak acids or bases.)
In ${ }^{-}$yellow, HIn red
In = Indicator

Ratio of yellow, $\mathbf{I n}^{-}$form, to red, HIn form, controlled only by $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right.$] for a given K_{I}

Bonus * Bonus * Bonus * Bonus * Bonus * Bonus

Sensitivity range brackets: $[\mathbf{I n}-] /[\mathrm{HIn}]=1$

Center of $\mathbf{p H}$ range where indicator works best is $\mathbf{p H}=\mathbf{p K}_{I}$
Some Important Acid-Base Indicators
(Skoog and West p 189, table 9-1)
Indicator Sensitive pH Range Acid Color Base Color
Thymolphthalein 9.3 -10.5 colorless blue
Phenolphthalein colorless red-violet
Methyl Yellow 2.9-4.4 red orange-yellow

Thermodynamics (1st part)

Introduction

Thermodynamics is the study of energy flow for bulk matter. It is not a subject which concerns itself with the behavior of individual molecules.

Thermodynamics is only valid under certain relatively restricted conditions. Most simply Thermodynamics describes equilibrium situations and change between equilibrium situations. All of Thermodynamic principles are based completely on experimental findings in the laboratory.
As such it is a totally empirical science. Example: Sun rises every morning. Statement based on experience or measurement. Thermodynamics is a discipline with only 3 laws:
(can only pay Paul by robbing Peter)

Some Definitions :

1) System : Object or box or part of the physical universe which we want to study.
2) Surroundings: Every thing that isn't the system (i.e. the remainder of the universe)
3) Equilibrium states or more simply and sloppily just states: A situation in which a system does not change with time i.e. The bulk properties don't change.
To describe the state of a system we usually need to know several things such as
4) State Functions: These are the most important quantities in Thermodynamics and also the most difficult to define.

A state function is a property of a system which may have dififerent values for different equilibrium states of the system;

Changes in values of state functions are easy to determine because the change depends only on the initial and final equilibrium states of the system.

Example :Temperature is a state function

Distance traveled between 2 points is not a state function.

$\Delta T=T_{f}-T_{i}($ Either path)

Ideal Gas State functions: Consider 1 mole of an ideal gas

$$
\mathbf{P V}=\mathbf{R T}
$$

Suppose begin with:
$P_{1}=5 \mathrm{~atm} \quad \mathrm{~V}_{2}=4.92$ liters
$\mathrm{T}_{1}=300^{\circ} \mathrm{K}$
And end with:

$$
P_{2}=4 \mathrm{~atm} \quad \mathrm{~V}_{2}=12.3 \text { liters } \quad \mathrm{T}_{2}=600^{\circ} \mathrm{K}
$$

If we got to the condition 4 atm , $\mathbf{1 2 . 3}$ liters, and $600^{\circ} \mathrm{K}$ by going as follows:

5 atm, 4.92 liters, $300^{\circ} \square 4$ atm, 6.15 liters, $300^{\circ} \square 4$ atm, 12.3 liters, 600° or by the path:
$5 \mathrm{~atm}, 4.92$ liters, $300^{\circ} \square 5 \mathrm{~atm}, 9.84$ liters, $600^{\circ} \square 4 \mathrm{~atm}$, 12.3 liters, 600°

Changes in state functions are independent of path.

Important State Functions:

Important Non State Functions: Work, Heat.

