

(Note! p is the **external** pressure on the gas!)

$$\mathbf{d}\mathbf{w} = -\mathbf{p}_{\mathrm{ext}}\mathbf{d}\mathbf{V}$$

Total work done in any change is the sum of little infinitesimal increments for an infinitesimal change dV.

 $\int dw = \int -p_{ext}dV = w$  (work done by the system )

Two Examples : (1) pressure = constant =  $p_{external}$ , V changes  $v_i \rightarrow v_f$ 

 $\mathbf{w} = \int_{\mathbf{v}_i}^{\mathbf{v}_f} \mathbf{p}_{ext} d\mathbf{V} = -\mathbf{p}_{ext} \int_{\mathbf{v}_i}^{\mathbf{v}_f} d\mathbf{V} = -\mathbf{p}_{ext} (\mathbf{v}_f - \mathbf{v}_i) = -\mathbf{p}_{ext} \Delta \mathbf{V} \implies$ 

{Irreversible expansion if  $p_{ext} \neq p_{gas}$ That is if,  $p_{gas} = nRT/V \neq p_{external}$ } Example 2 :  $dV \neq 0$ , but  $p \neq const$  and T = const:

nRT (Called a *reversible* process.)  $\mathbf{p}_{\text{ext}} = \mathbf{p}_{\text{gas}} =$  $\mathbf{V}$ 

$$w = -\int nRT \frac{dV}{V}$$

$$w = -\int_{v_i}^{v_f} nRT \frac{dV}{V} = -nRT \int_{v_i}^{v_f} \frac{dV}{V}$$

[Remembering that  $\int f(x) dx$  is the  $w = -nRT \ln(v_f / v_i)$  area under f(x) in a plot of f(x) vs x,  $w = -\int p dV$  is the area under p in a plot of p vs V.]

**P**, **V** not const but PV = nRT = const (Isothermal change)

{**Reversible isothermal expansion because**  $p_{ext} = p_{gas}$  }



Work done is NOT independent of path : Change the State of a gas two different ways: **Consider n moles of an ideal gas** Initial condition:  $T_i = 300$  K,  $V_i = 2$  liter,  $p_i = 2$  atm. Final condition:  $T_f = 300$  K,  $V_f = 1$  liter,  $p_f = 4$  atm. Path 1 consists of two steps: **ΔV≠0** for Step 1 : 2 atm, 2 *l*, 300K <u>cool at</u>  $\rightarrow 2 \text{ atm}, 1 l, 150 \text{K}$ this step const -p compress Step 2: Warm at constant V: 2 atm, 1 liter, 150 K  $\rightarrow \Delta V=0$  for this step 4 atm, 1 liter, 300 K.  $w = -p_{ext} (V_f - V_i)$  for the first step,  $p_{ext} = const = 2$  atm w = -2 atm (1 - 2) l = 2 l - atmw = 0 for 2nd step since V = const $w_{tot} = 2 l$  -atm

Path 2 is a single step reversible isothermal compression:

 $2 \text{ atm}, 2 l, 300 \text{K} \rightarrow 4 \text{ atm}, 1 l, 300 \text{K} (\text{T constant})$ 

 $p_{ext}=p_{gas}=$ nRT/V= p

$$w = -\int_{v_i}^{v_f} p \, dV = -\int_{v_i}^{v_f} nRT \frac{dV}{V} = -nRT \int_{v_i}^{v_f} \frac{dV}{V}$$

 $w = -nRT \ln (v_f / v_i) = -nRT \ln (1/2)$ 

Since  $nRT = const = PV = 4 l - atm \rightarrow$ 

w = -4 l - atm (ln 1/2) = (.693) 4 l - atm = 2.772 l - atm

Compare to w for path 1: w = 2 l-atm

w for two different paths between same initial and fianl states is NOT the same. Work is NOT a state Function! Heat : Just as work is a form of energy, heat is also a form of energy.

Heat is energy which can flow between bodies that are in thermal contact.

In general heat can be converted to work and work to heat -- can exchange the various energy forms.

Heat is also NOT a state function. The heat change occurring when a system changes state very definitely depends on the path.

Can prove by doing experiments, or (for ideal gases) can use heat capacities to determine heat changes by different paths.



Suppose  $\Delta E_a > \Delta E_b$  - now go from state 1 to state 2 along path a, then return to 1 along path b.

Energy change =  $\Delta E = \Delta E_a - \Delta E_b$ 

 $\Delta E > 0$ . Have returned system to its original state and created energy.

Experimentally find no situation in which energy is created, therefore,  $\Delta E_a = \Delta E_b$  and energy is a state function. No one has made a perpetual motion machine of 1st kind.

## **The First Law**

The energy increase of a system in going between two states equals the heat added to the system plus the work done <u>on</u> the system.

 $\Delta E = q+w$  (Here is where choice of sign for w is made)

dE = dq + dw

**q > 0** for heat added to the system

w > 0 for work done on the system (dV < 0)  $dw = -p_{ext}dV$  (w < 0 is work done <u>by</u> system, dV > 0) Totally empirical law. The result of observations in many, many experiments.

 $\Delta E$  is a state function independent of the path.

q and w are NOT state functions and do depend on the path used to effect the change between the two states of the system.



## **Measurements of** $\Delta E$

Suppose we want to measure  $\Delta E$  for the following change :

Initial State and system:  $O_2$  and  $N_2$  gas at 25 C and  $P(O_2) = P(N_2) = 1$  atm. (1 mole each)

Final State : 2 moles NO at 25°C, 1 atm.

(This is really a conversion of energy stored in the chemical bonds of O<sub>2</sub> and N<sub>2</sub> into stored chemical energy in the NO bond.) We know  $\Delta E = q + w$ 

a) What is w? 1st let us carry the change above out at constant volume :  $N_2 + O_2 \rightarrow 2NO$ 

Then no mechanical work is done by the gases as they react to form NO because they are not coupled to the world ---- no force moving through a distance --- nothing moves  $\rightarrow$  w = 0.

 $\Delta \mathbf{E} = \mathbf{q}_{\mathbf{v}}$ 

Change in energy for a chemical reaction carried out at constant volume is <u>directly</u> equal to the heat evolved or absorbed.

If  $q_v > 0$  then  $\Delta E > 0$  and energy or heat is absorbed by the system. This is called an **endoergic reaction**.

If  $q_v < 0$  then  $\Delta E < 0$  and energy or heat is evolved by the system. This is called an **exoergic reaction**. Can we find or define a new state function which is equal to the heat evolved by a system undergoing a change at constant pressure rather than constant volume?

i.e. is there a state function =  $q_p$ ? Yes! H = E + pV will have this property Note E, p, V are state fcts. : H must also be a state fct. Let us prove  $\Delta H = q_p$ : (for changes carried out at constant p)  $\Delta E = q + w$   $\Delta H = \Delta E + \Delta (pV)$  $\Delta H = q_p + w + p \Delta V$ , since p=const  $w = -p \Delta V$  for changes at const p  $\Delta H = q_p$  $\therefore \Delta H = q_p - p \Delta V + p \Delta V \rightarrow$  $dH_p = dq_p + dw + pdV$ ; dw = -pdV $dH = dq_p - pdV + pdV = dq_p \rightarrow dH = dq_n$