H is called the enthalpy. The enthalpy change for a system at

 constant pressure equals the heat absorbed or released.Are $\square H$ and $\square E$ similar (i.e. are q_{v}, q_{p} similar)?
$\square(\mathbf{p V}) \ll \square \mathbf{E} \quad \square \mathbf{H} \approx \square \mathbf{E}$
For reactions where only liquids and solids are involved, and where reaction is carried out at constant pressure (usually in the presence of the atmosphere) $\square V$ and therefore $\square(p V)=p \square V$ is usually negligible.
$\square \mathbf{H}=\square \mathbf{E}+\square \mathbf{n R T}$ for reactions of ideal gases

$$
\square H=2 \square H_{f}{ }^{0}\left(\mathrm{NH}_{3}\right)=2(-46,110)=-92,220 \text { joulles }
$$

$$
\begin{aligned}
& \mathrm{N}_{2}+\mathrm{O}_{2} \square \quad 2 \mathrm{NO} \\
& \square \mathbf{n}=\mathbf{0} \quad \square(\mathbf{p V})=\mathbf{0} \\
& \text { at const } T, \square H=\square E \\
& \mathbf{N}_{2}+3 \mathrm{H}_{2} \square 2 \mathrm{NH}_{3} \quad \square \mathrm{n}=\mathbf{- 2} \quad \square(\mathrm{pV})=-2 R T
\end{aligned}
$$

Example : Convert 1 mole of liquid $\mathbf{H}_{2} \mathrm{O}$ at $100^{\circ} \mathrm{C}$ into 1 mole of $\mathrm{H}_{2} \mathrm{O}$ vapor at $100^{\circ} \mathrm{C}$ and $p=1 \mathrm{~atm}$.
(\quad H $=44,013.6$ joules/mole
What is $\square \mathrm{E}$?
$\square \mathbf{H}=\square \mathbf{E}+\square(\mathbf{p V})=\square \mathbf{E}+\mathbf{p} \square \mathbf{V}($ const $\mathbf{p})$

1 mole $\mathrm{H}_{2} \mathrm{O}=18 \mathrm{gm}$; volume 1 gm of $\mathrm{H}_{2} \mathrm{O}$ at $100^{\circ} \mathrm{C}$ is $1.04 \mathrm{~mL} / \mathrm{gm}$
$v_{i}=18(1.04)=18.72 \mathrm{~mL}$
$\mathbf{v}_{\mathrm{f}}=\mathbf{n R T} / \mathbf{p} \quad$ assume ideal gas

$\square v=30,586-19=30,567 \mathrm{~mL}=\mathbf{3 0 . 5 7}$ liters .082 L-atm $=8.314$ joules $\square 101.4$ joules/L-atm

$\square E=\square H-p \quad \square V$
$\square E=44013.6$ joules $/$ mole -3099.5 joules $/$ mole

General Definitions of heat capacities (for 1 mole of gas):

Substitute $\mathbf{d Q}=\mathbf{d E}+\mathrm{pdV}=\mathrm{dE}-\mathrm{dw}$ (1st Law)
Remember $\quad E=\frac{3}{2} R T \quad V=\frac{R T}{P} \quad$ (1 mole gas)
$\frac{\mathbf{3}}{\mathbf{2}} \mathbf{R}+\frac{\mathbf{P R}}{\mathbf{P}} \frac{\mathbf{d T}}{\square \mathbf{d T}} \square_{\mathbf{P}}=(\mathbf{3} / \mathbf{2}) \mathbf{R}+\mathbf{R}=(\mathbf{5} / \mathbf{2}) \mathbf{R}$

Bonus * Bonus * Bonus * Bonus * Bonus * Bonus

Thermochemistry:

Can measure [H directly by making a laboratory determination of q_{p}. Want to set up a table of enthalpy changes for chemical reactions

Standard Enthalpy Change $\equiv \square \mathbf{H}^{\circ}$ for a system

Standard State of a Substance \equiv That form of the substance which is most stable at a pressure of $1 \mathbf{~ a t m}$ and $T=298^{\circ} \mathrm{K}$

Examples

Carbon : at $1 \mathbf{~ a t m}, 5^{\circ} \mathrm{C}$, Stand. St. is graphite (not diamond or coal)

Bromine : 1 atm, $\mathbf{2 5}^{\circ} \mathrm{C}$
Std. St. is liquid Bromine
For a reaction:
C (graphite) $+\mathrm{O}_{2}(\mathrm{~g}) \square \quad \mathrm{CO}_{2}(\mathrm{~g}) \quad$ measure q_{p} in lab (Heat released when burn graphite at const p)
This means evolve 393.52 kjoules of heat in converting 1 mole C graphite, 1 mole O_{2} gas, into 1 mole CO_{2} gas at 1 atm and $298^{\circ} \mathrm{K}$.

Can also burn CO in lab to produce CO_{2} :

Hess' Law of Constant Heat Summation

Heat evolved or absorbed at constant pressure for any chemical change is the same regardless of the path by which the change occurs.

C (graphite) $+\mathrm{O}_{2}$ (g) $\square \mathrm{CO}(\mathrm{g})+(1 / 2) \mathrm{O}_{2}(\mathrm{~g})$
Can't measure in the lab. (Always get a little CO_{2})

Enthallpy's of Formation

Standard Enthalpy of formation is $\mathbf{\Delta H}$ for a reaction where a pure compound is formed from its elements with all substances in their standard states ($\mathbf{2 5}{ }^{\circ} \mathrm{C}$)
$\mathrm{H}_{2}(\mathrm{~g})+\mathbf{1} / 2 \mathrm{O}_{2}(\mathrm{~g})=\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right)=-\mathbf{2 8 5 . 8}$ kjoules

Enthalpy of formation of elements in their standard state is defined to be zero:

Why are $\Delta H_{f}{ }^{\circ}$ useful?

Suppose we want to know $\Delta \mathbf{H}^{\circ}$ for the reaction:

$\mathrm{CH}_{3} \mathrm{COOH} \stackrel{1}{=} 2 \mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \stackrel{\mathbf{2}}{=} \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{CO}_{2}$

$2: \Delta H^{\circ}=+\Delta H_{f}{ }^{\circ}\left(\mathbf{C H}_{4}\right)+\Delta H_{f}{ }^{\circ}\left(\mathrm{CO}_{2}\right)$
because $\Delta \mathbf{H}^{\circ}$ is independent of path.
In principle can always accomplish a chemical transformation by following a path which 1 st decomposes reactants into elements then reforms product.

