

trans 1,2 difloroethylene

cis 1,2 difloroethylene

 $\Delta H_1 = \Delta H_{12} \text{ (Trans)} + \Delta H_2 + \Delta H_{21} \text{ (Cis)}$

Rearrange this to get: $\Delta H_2 + \Delta H_{12} (\text{Trans}) = \Delta H_1 - \Delta H_{21} (\text{Cis})$ Note: $\Delta H_{21} (\text{Cis})$ $= -\Delta H_{12} (\text{Cis})$ $\Delta H_2 + \Delta H_{12} (\text{Trans}) = \Delta H_1 + \Delta H_{12} (\text{Cis})$ $\Delta H_2 (T_2) = \Delta H_1 (T_1) + \Delta H_{12} (cis) - \Delta H_{12} (trans)$

However, $\mathbf{q}_{\mathbf{p}}(\mathbf{cis})$ and $\mathbf{q}_{\mathbf{p}}(\mathbf{trans})$ correspond to **physical** changes not chemical changes, so \rightarrow

 $\Delta H_2 = \Delta H_1 + \Delta C_p \Delta T$ where $\Delta C_p = [C_p (cis) - C_p (trans)]$

Or, in the general case:

 $\Delta C_p = \sum C_p (products) - \sum C_p (reactants)$

Numerical Example of $\Delta H(T_2) = \Delta H(T_1) + \Delta C_p \Delta T$

 $3 H_2 + N_2 = 2 NH_3$

 $3 H_2 + N_2 = 2 NH_3$ $\Delta H_{298} = 2 \Delta H_f (NH_3)$ = 2 (-46.19 kjoules/mole) = -92.38 kjoule

Simplest picture: $C_p(H_2) = C_p(N_2) = (5/2)R + R = (7/2)R$

 $C_p (NH_3) = (6/2) R + R = 4R$

 $\Delta H_{398} = -92.38 \text{ kjoules} + (-6 (8.314) \text{ joule})/\text{deg}) 100 \text{ deg}$

= -92.38 - 4.9884 kjoules = -97.37 kjoules

 $\Delta H_{398} = -97.37$ kjoules using simplest heat capacity

Small, but not negligible change with temperature (5-6%)

The Second Law and the Definition of Entropy

We know that a ball will roll down hill in a gravitational field to arrive at a lower potential energy :

Occurs spontaneously. Don't need to do work to get ball to roll down hill.

Opposite process of ball rolling up hill requires work be done! Uphill process is up in energy -- does not occur spontaneously. i.e. are all energy down hill processes spontaneous and all energy up hill processes not spontaneous?

Look at some chemical systems that undergo spontaneous reaction:

These spontaneous processes are exothermic or energy downhill! Maybe E is all that counts!

All evaporations:

 $H_2O(l) \rightarrow H_2O(v)$

 $\Delta H_{vap}^{\circ} = + 44.0 \text{ kJ}$ endothermic ΔH alone (its sign) does not seem to predict which way a reaction will proceed spontaneously.

Two other observations:

 $\Delta E = 0 \text{ at}$ const T so have no energy gain or loss

Probability for a molecule to be on left is (1/2). Probability to be on right is also (1/2)

Each configuration has a probability of (1/2)(1/2) × (1/2)(1/2)=(1/16) Configurations with equal number of molecules on left and right occur 6 times! Total probability for these configurations is 6/16.

Imagine the situation with 10²³ molecules! For an ideal gas, all configurations are of equal energy

Reversible and Irreversible Processes

Reversible processes: A reversible process is one in which the value of all thermodynamic state functions can be determined throughout the process of change. (T, p for system and surroundings (bath) differ only by dT, dp)

(This is analogous to having well defined functions in mathematics -- continuous etc.) must be able to define T, p, V, E throughout process.

to just balance pressure of gas:

 $p = p_{ex}$ once again (except now p, p_{ex} are smaller than their initial value and V is larger by an infinitesimal amount).

Two examples of irreversible expansions:

Since p_{ex}, p_{gas} differ only by an infinitesimal amount can reverse any change by going backward an infinitesimal amount.