Temperature Dependence of $\square \boldsymbol{H}$

trans 1,2 difloroethylene
cis $\mathbf{1 , 2}$ difloroethylene

Know $\square \mathbf{H}=\mathbf{q}_{\mathrm{p}}$:

Two paths:

1) Trans ($\left.T_{1}\right) \square$ Cis $\left(T_{1}\right)$

2) $\operatorname{Trans}\left(\mathrm{T}_{1}\right) \square \operatorname{Trans}\left(\mathrm{T}_{2}\right) \square \operatorname{Cis}\left(\mathrm{T}_{2}\right) \square \operatorname{Cis}\left(\mathrm{T}_{1}\right)$

$\Delta H_{1}=\Delta H_{12}$ (Trans) $+\Delta H_{2}+\Delta H_{21}$ (Cis)

Rearrange this to get:
$\Delta H_{2}+\Delta H_{12}($ Trans $)=\Delta H_{1}-\Delta H_{21}($ Cis $) \not \overbrace{}^{\text {Note: } \Delta H_{21}(\text { Cis }}=-\Delta H_{12}($ Cis $)$
$\Delta H_{2}+\Delta H_{12}($ Trans $)=\Delta H_{1}+\Delta H_{12}($ Cis $)$

$$
\Delta H_{2}\left(\mathrm{~T}_{2}\right)=\Delta \mathrm{H}_{1}\left(\mathrm{~T}_{1}\right)+\Delta \mathrm{H}_{12}(\text { cis })-\Delta \mathrm{H}_{12}(\text { trans })
$$

Since $\Delta H=q_{p} \square$
q_{p} (cis) is heat needed to increase temperature of cis $\mathbf{1 , 2}$ from $T_{1} \square T_{2}$

However, q_{p} (cis) and q_{p} (trans) correspond to physical changes not chemical changes, so \square
$\mathbf{q}_{\mathrm{p}}($ cis $)=\mathrm{C}_{\mathrm{p}}(\mathrm{cis}) \Delta \mathrm{T}$ with $\Delta T=T_{2}-T_{1}$

$\Delta H_{2}=\Delta H_{1}+\Delta C_{p} \Delta T$ where $\Delta C_{p}=\left[C_{p}(\right.$ cis $)-C_{p}($ trans $\left.)\right]$
Or, in the general case:

$$
\Delta C_{p}=\square C_{p}(\text { products })-\square C_{p}(\text { reactants })
$$

Numerical Example of $\Delta H\left(T_{2}\right)=\Delta H\left(T_{1}\right)+\Delta C_{p} \Delta T$

$\mathbf{3} \mathbf{H}_{\mathbf{2}}+\mathbf{N}_{\mathbf{2}}=\mathbf{2} \mathbf{N H}_{\mathbf{3}}$

$$
\begin{aligned}
& \mathbf{3} \mathrm{H}_{\mathbf{2}}+\mathrm{N}_{\mathbf{2}}=\mathbf{2} \mathrm{NH}_{3} \quad \Delta \mathrm{H}_{\mathbf{2 9 8}}{ }^{\circ}=\mathbf{2} \Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}\left(\mathbf{N H}_{3}\right) \\
& =2(-46.19 \mathrm{kjoules} / \text { mole })=-92.38 \text { kjoule }
\end{aligned}
$$

Simplest picture:

$$
C_{p}\left(H_{2}\right)=C_{p}\left(N_{2}\right)=(5 / 2) R+R=(7 / 2) R
$$

$$
\mathrm{C}_{\mathrm{p}}\left(\mathrm{NH}_{3}\right)=(6 / 2) \mathrm{R}+\mathrm{R}=4 \mathrm{R}
$$

$\Delta H_{398}{ }^{\circ}=-92.38$ kjoules $+(-6(8.314)$ joule $) /$ deg $) 100 \mathrm{deg}$
$=-92.38-4.9884$ kjoules $=-97.37$ kjoules
$\Delta \mathrm{H}_{398}{ }^{\circ}=-97.37$ kjoules using simplest heat capacity

Small, but not negligible change with temperature (5-6\%)

The Second Law and the Definition of Entropy

We know that a ball will roll down hill in a gravitational field to arrive at a lower potential energy :

Occurs spontaneously. Don't need to do work to get ball to roll down hill.
Opposite process of ball rolling up hill requires work be done! Uphill process is up in energy -- does not occur spontaneously.
i.e. are all energy down hill processes spontaneous and all energy up hill processes not spontaneous?

Look at some chemical systems that undergo spontaneous reaction:

These spontaneous processes are exothermic or energy downhill! Maybe \mathbb{E} is all that counts!

All evaporations:
$\mathrm{H}_{2} \mathrm{O}$ (l) $\square \quad \mathrm{H}_{2} \mathrm{O}$ (v)
$\square \mathrm{H}_{\mathrm{vap}}{ }^{\circ}=+44.0 \mathrm{~kJ}$
endothermic
ΔH alone (its sign) does not seem to predict which way a reaction will proceed spontaneously.

Two other observations:

Entropy in Action

Probability for a molecule to be on left is (1/2). Probability to be on right is also (1/2)

Each
configuration
has a probability
of $(1 / 2)(1 / 2) \square$
$(1 / 2)(1 / 2)=(1 / 16)$

Configurations with equal number of molecules on left and right occur 6 times! Total probability for these configurations is 6/16.

Imagine the situation with $\mathbf{1 0}^{23}$ molecules!
For an ideal gas, all configurations are of equal energy

Reversible and Irreversible Processes

Reversible processes: A reversible process is one in which the value of all thermodynamic state functions can be determined throughout the process of change. (T, p for system and surroundings (bath) differ only by dT, dp)
(This is analogous to having well defined functions in mathematics -- continuous etc.) must be able to define T, p, V, E throughout process.

Assume at start that force due to weight of sand is sufficient to just balance pressure of gas:
$p=p_{\text {ex }}$ once again (except now $p, p_{\text {ex }}$ are smaller than their initial value and V is larger by an infinitesimal amount).

Two examples of irreversible expansions:
A)

В)

Since $p_{e x}, p_{\text {gas }}$ differ only by an infinitesimal amount can reverse any change by going backward an infinitesimal amount.

