Path 1: $\mathbf{P}_{\mathrm{i}} \square \mathrm{P}_{\mathrm{f}}$ at start with $\mathrm{V}_{\mathrm{i}} \square \mathrm{V}_{\mathrm{f}}$

Path 2:
$\mathbf{P}_{\mathrm{i}} \square \mathbf{P}_{2} \square \mathbf{P}_{\mathrm{f}}$ stoping at an intermediate pressure \mathbf{P}_{2} with
$\mathbf{V}_{\mathrm{i}} \square \mathrm{V}_{\mathbf{2}} \square \mathrm{V}_{\mathrm{f}}$

Work in an
Irreversible Isothermal Expansion [T constant]

Work in an
 Isothermal Expansion: Approaching Reversibility

Pressure

"True" Reversible, Isothermal Expansion of an Ideal Gas

$$
\mathbf{p}_{\mathrm{gas}}=\mathbf{p}_{\mathrm{ext}}
$$

$$
p_{\text {gas }}=\frac{n R T}{v}
$$

Maximum

 possible work is done by a gas in a reversible expansion.

Quantitative comparison of reversible and irreversible work:

and suddenly drop pressure to: $\quad P_{e x}=P_{2}=\frac{n R T}{\mathbf{v}_{2}}$ so fast that gas doesn't expand \square

Then expansion takes place with $\mathbf{P}_{\mathrm{ex}}=\mathrm{P}_{2}$

Reversilble work:

> Bonus * Bonus * Bonus * Bonus * Bonus * Bonus

Entropy and the Second Law

Preliminary statement: There exists a state function called entropy whose change is given by
$\Delta S=\square^{2} \frac{\mathrm{dq}_{\mathrm{rev}}}{\mathrm{T}}=\square^{2} \frac{1}{\mathrm{~T}} d q_{\mathrm{rev}}$
Here $\mathbf{d q}_{\text {rev }}$ is an infinitesemal change in the heat added for a reversible process, $\mathbf{T}=$ Kelvin temperature.
(1) Choose a reversible path
(3) Divide $\mathbf{d q}_{\text {rev }}$ by T at each point

If q_{rev} were an ordinary well defined variable (state function) like P, V could think of it this way:

(graph is misleading because \mathbf{q} is not an ordinary variable!)

Thus, over any path between the same initial and final states (reversible or irreversible) ΔS has the same value.

The Second Law

The simplest way to state the second law is for an isolated system. This is a system for which $d q=0$, and $d w=0$.
$\Delta S=0$ for a reversible change
$\Delta S>0$ for an irreversible change
(corollary: $\Delta S<0$ is impossible for an isolated system).

The word spontaneous is used interchangeably with irreversible to describe processes that are observed in nature to "proceed on their own".

Since we can always combine the system together with surroundings to form an isolated system which is the universe, we can restate the 2nd Law:
ΔS (universe) < 0 impossible (never observed)

Entropy Calculations

1) Cardinal Rule: Can only calculate entropy change if choose a reversible path.

3) ΔS for isothermal process (reversible) $T=$ const
I. $d q_{\text {rev }}=$ sum of heat changes over path. Total is $q_{\text {rev }}$ or heat added going from state $\mathbf{1}$ to $\mathbf{2}$ over reversible path.

For an ideal monatomic gas $E=(3 / 2)$ RT
$\Delta E=q+w=0 \quad \square \quad \mathbf{w}=-\mathbf{q}$

For an ideal gas, $\left.P=\frac{n R T}{V}\right\} V$ is not constant.
$\Delta S=n \mathbb{R} \ln \left(V_{2} / V_{1}\right)$ Ideal gas isothermal change.

Note this last case is NOT inconsistent with the 2nd law!
System entropy can decrease as long as entropy of universe either increases or stays the same. If system entropy decreases, entropy of surroundings must increase.

As we shall see later, the fact that we need to include both the system and surroundings when considering the Second Law makes the ΔS function "inconvenient".

Temperature Dependence of Entropy

$\Delta S=\square^{2} \frac{{d q_{r e v}}^{T}}{}$
For constant pressure process

For infinitesimal change $d_{\text {rev }}=\mathbf{n C}_{\mathrm{p}} \mathbf{d T}$
[Now assume C_{p} independent of T]
$\Delta S_{p}=n C_{p} \ln \left(T_{2} / T_{1}\right)$
Assumes $\mathrm{C}_{\mathrm{p}}, \mathrm{C}_{\mathrm{v}}$ are constant over range $T_{1} \square T_{2}$

For an ideal gas

$$
C_{p}=(3 / 2) R+R=(5 / 2) R
$$

Note that $\Delta S_{p}, \Delta S_{v}$ are not the same. Cannot be between same initial and final states! (T_{1}, T_{2} can be same but P_{1}, P_{2} and V_{1}, V_{2} must be different).

Absolute Entropies and the Third Law

In same way can set up an arbitrary scale for $\Delta S_{f}{ }^{\circ}$. As it turns out, can allso set up an absolute scalle for entropy.

Third Law of Thermodynamics

$$
\text { But } \square \mathbf{S}=\square\left[\mathbf{d} q_{\mathrm{rev}} / \mathrm{T}\right] \quad \mathbf{d} q_{\mathrm{rev}}=\mathrm{C}_{\mathrm{p}} \mathbf{d T}
$$

Note: Really cannot take

 C_{p} indlependent of T here$$
\Delta S=S_{T_{\mathrm{F}}}-\mathrm{S}_{0}=\mathrm{S}_{\mathrm{T}_{\mathrm{F}}}-0=\mathrm{S}_{\mathrm{T}_{\mathrm{F}}}
$$ because are going from absolute zero to some finite T. Most substances go firom solid to liquid to gas over this range!

$S_{298}{ }^{\circ} \equiv$ Standard absolute entropy: $T_{F}=298 \mathrm{~K}$ and $P=1 \mathrm{~atm}$.

