If we define $G_i = G^\circ (P_i = 1 \text{ atm})$ then

where P_f must be expressed in atmospheres.

In general for 1 mole ideal gas

Shows how G depends on P at fixed T if know G°(T).

To distinguish G for 1 mole, call it $\mu(T, P) = \mu^{\circ}(T) + RT \ln P$

μ is free energy/mole for an ideal gas at T and P. (Called chemical potential)

For n moles $n\mu = n\mu^{\circ} + nRT \ln P$

Consider now the Chemical reaction:

Free Energy for 1 mole of ideal gas D at a partial pressure of P_D

 $\Delta G = \mathbf{c}[\mu_C^\circ + RT \ln P_C] + \mathbf{d}[\mu_D^\circ + RT \ln P_D] - \mathbf{a}[\mu_A^\circ + RT \ln P_A] - \mathbf{b}[\mu_B^\circ + RT \ln P_B]$

$\Delta G = \Delta G^{\circ} + cRT \ln P_{C} + dRT \ln P_{D} - aRT \ln P_{A} - bRT \ln P_{B}$

True for arbitrary values of P_C , P_D , P_A , P_B

Since initial and final states are in eq. ΔG is not neg for either direction. $\therefore \Delta G = 0 \Rightarrow$

But $\mathbf{K}_{\mathbf{p}} = \{(\mathbf{P}_{Ceq})^{\mathbf{c}} (\mathbf{P}_{Deq})^{\mathbf{d}} / (\mathbf{P}_{Aeq})^{\mathbf{a}} (\mathbf{P}_{Beq})^{\mathbf{b}}\}!$

$\Delta G^{\circ} = -RT \ln K_{p}$

Remarkably important formula relates free energy and K_p.

$$K_{p} = e^{-\Delta G^{\circ}/RT} = 10^{-\Delta G^{\circ}/2.303RT}$$

 $\Delta G^{\circ} > 0 \rightarrow exponent < 0 K_p < 1$

Bonus * Bonus * Bonus * Bonus * Bonus * Bonus Remember old rule for shift in eq. with T. Equilibrium shifts to left for an exothermic reaction and to right for an endothermic reaction.

Shift in Equilibrium with temperature:

 $\Delta H^{\circ} < 0$ means heat released (exothermic) A \rightarrow B + heat $\Delta H^{\circ} < 0$ means heat released (exothermic) A \rightarrow B + heat

Think of heat as a reagent that works like common ion effect: A → B + heat

 $\Delta H^{\circ} > 0$ heat absorbed (endothermic) heat + A \rightarrow B

 $K_p = e^{-\Delta H^\circ/RT} e^{\Delta S^\circ/R}$

Increasing T causes $\Delta H^{\circ}/RT$ and hence $e^{+\Delta H^{\circ}/RT}$ to get smaller.

K_p increases and equilibrium shifts to right.

Connecting Kinetics and Equilibria

By definition, **kinetic processes** are not **equilibrium processes**. In fact, we may think of kinetic processes as the mechanism that nature uses to reach the equilibrium state.

 $k_{f}[A]_{e}[B]_{e}=k_{r}[C]_{e}[D]_{e}$ (Equilibrium condition) Where $[A]_{e}$ etc. are the equilibrium concentrations of [A] etc. Using the Arrhenius form for the rate constants k_f and k_r

$$\mathbf{k}_{\mathbf{f}} = \mathbf{A}_{\mathbf{f}} \mathbf{e}^{-\mathbf{E}_{\mathbf{A}\mathbf{f}}/\mathbf{R}\mathbf{T}}$$
 $\mathbf{k}_{\mathbf{r}} = \mathbf{A}_{\mathbf{r}} \mathbf{e}^{-\mathbf{E}_{\mathbf{A}\mathbf{r}}/\mathbf{R}\mathbf{T}}$

But as we just learned (or you already knew from high school):

Where ΔH^0 is the enthalpy change for the reaction and ΔS^0 is the entropy change for the reaction. ΔG^0 is the Free Energy

Equating these two forms for the equilibrium constant allows us to connect thermodynamics and kinetics!

 $(A_f/A_r) \exp \left[-(E_{Af}-E_{Ar})/RT\right] = \left\{ e^{(\Delta S/R)} \right\} \left\{ e^{(-\Delta H/RT)} \right\}$

Chemical Bonding

Hydrogen atom based atomic orbitals a.k.a. hydrogen atom wavefunctions: 1s, 2s, 2p, 3s, 3p, 3d,

 $\psi_{1s} = 1/(\pi)^{1/2}(1/a_0)^{3/2} \exp[-r/a_0], a_0 = Bohr Radius = 0.529 Angstroms$

Electron 74 (**x,y,z**) V **Nucleus** $r^2 = x^2 + y^2 + z^2$ X

Orbitals, Wavefunctions and Probabilities

The orbital or wavefunction is just a mathematical function that can have a **magnitude** and **sign** (e.g. + 0.1 or -0.2) at a given point r in space.

Probability of finding a 1s electron at a particular point in space is often not as interesting as finding the electron in a thin shell between r and r+dr.

Orbitals, Wavefunctions and Probabilities Probability of finding a 1s electron in thin shell between r and r+dr:

 $Prob(r,r+dr) \sim \psi_{1s} \psi_{1s} [r^2]dr$

Volume of shell of thickness dr:

$$dV = (4/3)\pi \left[(r)^3 + 3r^2 dr + 3r(dr)^2 + (dr)^3 - r^3 \right]$$

 $dV \approx (4\pi)[r^2 dr]$

 $[r >>> dr \rightarrow 3r^2 dr >>> 3r(dr)^2 + (dr)^3]$

 $\sigma_{1s} = C_1[\psi_{1s}(A) + \psi_{1s}(B)]$, Sigma 1s Bonding Molecular orbital. C_1 is a constant.

Note that probabilities for finding electron at some position in space scale like $[\sigma_{1s}]^2$ and $[\sigma_{1s}^*]^2$: $[\sigma_{1s}^*]^2 = \{C_2[\psi_{1s}(A) - \psi_{1s}(B)]\}^2 = (C_2)^2\{[\psi_{1s}(A)]^2 + [\psi_{1s}(B)]^2 - 2[\psi_{1s}(A)][\psi_{1s}(B)]\}$

"Non-interacting" part is result for large separation between nucleus A and B

 $[\sigma_{1s}]^{2} = \{C_{1}[\psi_{1s}(A) + \psi_{1s}(B)]\}^{2} = (C_{1})^{2}\{[\psi_{1s}(A)]^{2} + [\psi_{1s}(B)]^{2} + 2[\psi_{1s}(A)][\psi_{1s}(B)]\}$

Notational Detail

Oxtoby uses two different notations for orbitals in the 4th and 5th editions of the class text:

 σ_{1s} in the 4th edition becomes σ_{g1s} in the 5th edition

 σ_{1s}^* in the 4th edition becomes σ_{u1s}^* in the 5th edition

The addition of g and u provides some extra identification of the orbitals and is the one encountered in the professional literature.

g and u are from the German "gerade" and "ungerade"

Wave Functions	H ⁺ ₂	Electron Densities
$\psi_{1s}(\mathbf{A}) \qquad \sigma_{1s}^* = C_2 \left[\psi_{1s}^{\mathbf{A}} - \psi_{1s}^{\mathbf{B}}\right] + \mathbf{B}$	ANTIBONDING	$[\sigma_{1s}^*]^2$
$\mathbf{A} \qquad \mathbf{-\psi}_{1s}(\mathbf{B})$	region between nuclei A and B	$\begin{array}{c} \mathbf{A} \qquad \mathbf{B} \\ \mathbf{-2[\psi_{1s}(\mathbf{A})][\psi_{1s}(\mathbf{B})]} \end{array}$
$\sigma_{1s} = C_1 \left[\psi_{1s}^A + \psi_{1s}^B \right]$	BONDING	+ 2[$\psi_{1s}(A)$][$\psi_{1s}(B)$] [σ_{1s}] ²
A B	Pushes e ⁻ between nuclei A and B	A B
$\psi_{1s}(A) \qquad \psi_{1s}(B)$ $\downarrow \qquad + \qquad + \qquad + \qquad + \qquad - \qquad - \qquad - \qquad - \qquad - \qquad -$	NON-INTERACTING	$\psi^{2}(\mathbf{n.i.}) \sim \left[\left(\psi^{A}\right)^{2} + \left(\psi^{B}\right)^{2}\right]$ $A B$

CORRELATION DIAGRAM

