If we define $G_{i}=G^{\circ}\left(P_{i}=1 \mathrm{~atm}\right)$ then
where P_{f} must be expressed in atmospheres.

In general for 1 mole ideal gas

Shows how G depends on P at fixed T if know $G^{\circ}(T)$.

To distinguish G for 1 mole, call it $\square(T, P)=\square^{\circ}(T)+R T \ln P$
\square is free energy/mole for an ideal gas at T and P. (Called chemical potential)
For n moles $n \square=\mathbf{n} \square^{\circ}+\mathbf{n R T} \ln \mathbf{P}$

Consider now the Chemical reaction:

> Free Energy for 1 mole of ideal gas D at a partial pressure of P_{D}
$\square G=\mathbb{C}\left[\square_{C}{ }^{\circ}+\mathbb{R} T \ln \mathbb{P}_{\mathrm{C}}\right]+\mathrm{d}\left[\square_{\mathrm{D}}{ }^{\circ}+\mathbb{R} T \ln \mathbb{P}_{\mathrm{D}}\right]=$ $\mathfrak{a}\left[\square_{\mathrm{A}}{ }^{\circ}+\mathbb{R} T \ln \mathbb{P}_{\mathrm{A}}\right]=\mathrm{b}\left[\square_{\mathbb{B}}{ }^{\circ}+\mathbb{R} T \ln \mathbb{P}_{\mathrm{B}}\right]$

$$
\square G=\square G^{\circ}+c \mathbb{R} T \ln \mathbb{P}_{\mathrm{C}}+d \mathbb{R} T \ln \mathbb{P}_{\mathrm{D}}=a \mathbb{R} T \ln \mathbb{P}_{\mathrm{A}}=\mathrm{b} R T \ln \mathbb{P}_{\mathrm{B}}
$$

True for arbitrary values of $\mathbf{P}_{\mathrm{C}}, \mathrm{P}_{\mathrm{D}}, \mathrm{P}_{\mathrm{A}}, \mathrm{P}_{\mathrm{B}}$

Since initial and final states are in eq. $\Delta \mathrm{G}$ is not neg for either direction. $\square \Delta G=0 \square$

$$
\text { But } \mathbb{K}_{\mathrm{p}}=\left\{\left(\mathbb{P}_{\text {Ceq }}\right)^{\mathrm{c}}\left(\mathbb{P}_{\text {Deq }}\right)^{\mathrm{d}} /\left(\mathbb{P}_{\text {Aeq }}\right)^{\mathrm{a}}\left(\mathbb{P}_{\text {Beq }}\right)^{\mathrm{b}}\right\}!
$$

$\Delta G^{\circ}=-\mathbb{R T} \ln K_{p}$

Remarkably important formula relates free energy and $\mathbf{K}_{\mathbf{p}}$.

$$
K_{p}=e^{-\Delta G^{\circ} / R T}=10^{-\Delta G^{\circ} / 2.303 R T}
$$

$\Delta G^{\circ}>0 \square$ exponent $<0 K_{p}<1$

Bonus * Bonus * Bonus *
Bonus * Bonus * Bonus

Remember old rule for shift in eq. with T. Equilibrium shifts to left for an exothermic reaction and to right for an endothermic reaction.

Shift in Equilibrium with temperature:
$\Delta H^{\circ}<0$ means heat released (exothermic)
A $\square \mathbf{B}$ + heat
$\Delta H^{\circ}<0$ means heat released (exothermic) A $]$ B + heat

Think of heat as a reagent that works like common ion effect: A B B + heat
$\Delta H^{\circ}>0$ heat absorbed (endothermic) heat + A \square B

$$
K_{p}=\mathbf{e}^{-\Delta H^{\circ} / R T} \mathbf{e}^{\Delta S^{\circ} / \mathbf{R}}
$$

Increasing T causes $\Delta H^{\circ} / R T$ and hence $e^{+\Delta H / / R T}$ to get smaller.
K_{p} increases and equilibrium shifts to right.

Connecting Kinetics and Equilibria

By definition, kinetic processes are not equilibrium processes. In fact, we may think of kinetic processes as the mechanism that nature uses to reach the equlibrium state.
$k_{f}[A]_{e}[B]_{e}=k_{r}[C]_{e}[D]_{e}$ (Equilibrium condition) Where $[A]_{e}$ etc. are the equilibrium concentrations of [A] etc.

Using the Arrhenius form for the rate constants k_{f} and k_{r}

$$
\mathbf{k}_{\mathrm{f}}=\mathbf{A}_{\mathrm{f}} \mathbf{e}^{\square \mathbf{E}_{\mathrm{Af}} / \mathbf{R T}} \quad \mathbf{k}_{\mathrm{r}}=\mathbf{A}_{\mathrm{r}} \mathrm{e}^{\square \mathbf{E}_{\mathrm{Ar}} / \mathbf{R T}}
$$

But as we just learned (or you already knew from high school):

Where $\square H^{0}$ is the enthalpy change for the reaction and $\square S^{0}$ is the entropy change for the reaction. $\square \mathbf{G}^{\mathbf{0}}$ is the Free Energy

Equating these two forms for the equilibrium constant allows us to connect thermodynamics and kinetics!

$$
\left(\mathbf{A}_{\mathbf{f}} / \mathbf{A}_{\mathbf{r}}\right) \exp \left[-\left(\mathbf{E}_{\mathbf{A f}}-\mathbf{E}_{\mathbf{A r}}\right) / \mathbf{R T}\right]=\left\{\mathrm{e}^{\left(\left[\mathbf{S}^{\circ} / \mathbf{R}\right)\right.}\right\} \cdot\left\{\mathbf{e}^{\left(-\square \mathbf{H}^{\circ} / \mathbf{R T}\right)}\right\}
$$

Chemical Bonding

Hydrogen atom based atomic orbitalls a.k.a. hydrogen atom wavefunctions: 1s, 2s, 2p, 3s, 3p, 3d,
$\square_{1 \mathrm{~s}}=1 /(\square)^{1 / 2}\left(1 / \mathbf{a}_{0}\right)^{3 / 2} \exp \left[-r / \mathbf{a}_{0}\right], \mathbf{a}_{0}=$ Bohr Radius $=0.529$ Angstroms

Orbitals, Wavefunctions and Probabilities

The orbital or wavefunction is just a mathematical function that can have a magnitude and sign (e.g. +0.1 or -0.2) at a given point r in space.

Probability of finding a 1s electron at a particular point in space is often not as interesting as finding the electron in a thin shell between r and $r+d r$.

Orbitals, Wavefunctions and Probabilities

Probability of finding a 1s electron in thin shell between r and $r+d r$:

```
Prob(r,r+dr) ~ }\mp@subsup{\square}{1s}{}\mp@subsup{\square}{1s}{}[\mp@subsup{\mathbf{r}}{}{2}]d
```

Volume of shell of thickness dr:

$$
\begin{gathered}
d V=(4 / 3) \square\left[(1)^{3}+3 r^{2} d r+3 r(d r)^{2}+(d r)^{3}-/^{3}\right] \\
{\left[r \ggg d r \square 3 r^{2} d r \ggg 3 r(d r)^{2}+(d r)^{3}\right]}
\end{gathered}
$$

Bonding in Diatomic Molecules such as H_{2}

$\square_{1 s}(A)=1 /(\square)^{1 / 2}\left(1 / a_{0}\right)^{3 / 2} \exp \left[-r_{1} / a_{0}\right]$, 1s orbital for atom A \bigcirc
Note the two orbitals are centered at different points in space.
$\square_{1 s}=C_{1}\left[\square_{1 s}(A)+\square_{1 s}(B)\right]$, Sigma 1s Bonding Molecular orbital. C_{1} is a constant.

Note that probabilities for finding electron at some position in space scale like $\left[\square_{1 s}\right]^{2}$ and $\left[\square_{1 s}{ }^{*}\right]^{2}$:
$\left[\square_{1 \mathrm{~s}}{ }^{*}\right]^{2}=\left\{\mathrm{C}_{2}\left[\square_{1 \mathrm{~s}}(\mathrm{~A})-\square_{1 \mathrm{~s}}(\mathrm{~B})\right]\right\}^{2}=$ $\left(\mathrm{C}_{2}\right)^{2}\left\{\left[\square_{1 \mathrm{~s}}(\mathrm{~A})\right]^{2}+\left[\square_{1 s}(\mathrm{~B})\right]^{2}-2\left[\square_{1 s}(\mathrm{~A})\right]\left[\square_{1 \mathrm{~s}}(\mathbb{B})\right]\right\}$
"Non-interacting" part is result for large separation between nucleus A and B

$$
\begin{aligned}
& {\left[\square_{1 s}\right]^{2}=\left\{C_{1}\left[\square_{1 s}(\mathbf{A})+\square_{1 s}(\mathbf{B})\right]\right\}^{2}=} \\
& \quad\left(\mathbf{C}_{1}\right)^{2}\left\{\left[\square_{1 s}(\mathbf{A})\right]^{2}+\left[\square_{1 s}(\mathbf{B})\right]^{2}+2\left[\square_{1 s}(\mathbb{A})\right]\left[\square_{1 s}(\mathbb{B})\right]\right\}
\end{aligned}
$$

Notational Detail

Oxtoby uses two different notations for orbitals in the 4th and 5 th editions of the class text:
$\square_{1 s}$ in the 4th edition becomes $\square_{\text {g1s }}$ in the 5th edition
$\square_{1 s}{ }^{*}$ in the 4 th edition becomes $\square_{\mathrm{u} 1 \mathrm{~s}}{ }^{*}$ in the 5 th edition

The addition of g and u provides some extra identification of the orbitals and is the one encountered in the professional literature.
g and u are from the German "gerade" and "ungerade"

H_{2} Molecular Orbitals

CORRELATION DIAGRAM

Z for $\mathrm{He}=\mathbf{2}$
He_{2}

He_{2} Molecular Orbitals

