1 , 3

—mc~ = — (R/N)T

2 , (R No)
R /N, is the (gas constant) / molecule and is called
Boltzmann’s constant k = (R / N,)

1 3
“me? = ZKT Kool result!!
2 2
1 9 3
N,.(—mc¢c“) = — RT
o, me?) = 2

1 2
NO(— mc )is the Kinetic energy of one mole of gas atoms
2

Since N, m = M (molecular weight) — (1/2)Mc? = (3/2) RT



Units: me2
EN is a Kinetic energy, therefore

2} (mcz\
3

PV = n[— NO[TJ must also have units of energy

PV ~ |pressure] |volume]|
= [(force / Area)] [(Area) (Length)]
PV ~ force X length

Energy = Force X Distance



Bonus * Bonus * Bonus * Bonus * Bonus * Bonus




Bonus * Bonus * Bonus * Bonus * Bonus * Bonus




Typical Molecular Speeds

Understand that € = \/c=2 = Cpine [Root Mean Square Speed]

[Later we will define ¢, more fully.]
(1/2)me2= (3/2)kT —> ¢ = (3kT/m)'”2
Notice: ¢ = (3N,kT/N,m)!”2 [N, is Avagadro’s number]

But Nk = R and Nym = M (molecular weight)

¢ = (3RT/M)!”2 RN ¢2=3RT/M

Consider Gas with At wt of 0.001 Kg/mole (H atoms!)
R=8.314 Joules/mole-deg, T = 300 deg

c2=3RT/M =7.47 x 10® Joules/Kg = 7.47 x 10° (m/sec)?



Typical Molecular Speeds

Understand that € = \/c=2 = C,.ps [ROOt Mean Square Speed]

(12)me*= (312)kT — ¢ = (3kT/m)!”2
Consider Gas with At wt of 0.001 Kg/mole (H atoms!)

m = (0.001 Kg / mole) / (6.02 x 10>} molecule / mole)
=1.66 x 1027 Kg/molecule

k =1.38 x 10-23 Joules/molecule - deg, T =300 deg

c2=3KkT/m = 7.47 x 10% Joules/Kg = 7.47 x 10 (m/sec)?



c=2.73 x10° m/sec  (Fast Moving Particle) ‘

¢ =1.37 x 10° m/sec for He = 0.004 Kg/mole

Notec ~T12 —>  €1200 = 2 €390

Note ¢ ~1/m2 — CH, = 4¢o,(My, =2,Mp, =32)

Why do Light and Heavy Gases Exert Same Pressure at
Constant V,T, n (# moles)? (p =nRT/V)

wall collision frequency/unit area =
(1/6) (N/V) (Ac t)/(At) = (1/6) (N/V) ¢ However, since

C ~ L Lighter molecules collide with wall more

m frequently than heavy molecules!



BUT momentum change per collision ~ mc, with

m
mc~ — ~ Vi

~m

Thus, heavier molecules transfer more momentum
per impact

Two effects cancel since (1/m'?) x (m!’?) is independent of m




Put very small hole in box and measure # of molecules
coming through. If hole is really small , molecules won’t
know it’s there and will collide with hole at same rate as
they collide with the wall.

Ga?_’ /C) C( ! vacuum




Effusion
of Gases:
The Movie

Note:
QuickTime™ and a
Video decompressor &« HOle
are needed to see this picture.
Must be

very small!



Effusion of a Gas through a Small Hole
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Gag_’ /(:; C( ! vacuum

If hole area = A, rate at which molecules
leave =(1/6) N/ V) Ac=R

For two different molecular speeds c¢,, ¢, and
concentrations N,/V, N,/V:

If N; = N, (equal initial concentrations)

3KkT

R (& |_Vmy
1{2 C) 3k —

s

-

m,



R, [32

For m, being H, and m, being O, — R_2 “\ 2

Find experimentally that light gases escape more
quickly than heavy ones!

Definition: Heat in calories needed to raise temperature
of 1 mole of a substance 1" centigrade.

Two kinds: C, (add heat at constant pressure)
C, (add heat at constant volume)

Adding heat means adding energy. Energy goes two places:



(1) Increases kinetic energy of molecules:
KE =(1/2) mc?, ¢2~T

(2) Perform work. | As we shall see shortly, no work is done
at constant volume.

C,: volume constant. All heat goes to KE. Compute as follows:

KE [1 mole gas] = % me’ x N = % kTN, = % RT

Increase T from T, to T,: KE,=(3/2)RT, & KE,=(3/2)RT,

KE, -KE, = % R('T, — T, ) =energy to increase T form T, to T,

By definition when T, -T, =1 KE, -KE, =C,

C,=@G/2)R  (Independent of T for an ideal gas)
(C, =3 cal / mole - deg)



Cp: Pressure constant so volume increases with increase
in T. As we see below, work is done in this case:

Gas

A

|
| —L—>
|

+—p=F/A
~—Movable Piston

T,

T,

work=F XL =(Ap) XL =p x (AL)
But, AL =V, - V, = AV (volume change)

work =p x (AL) = p(V, - V,) =nR(T,-T,) = nRAT

w = pAV = nRAT

%

| For n=1 mole, AT=1°, w=R

To raise temperature of one mole of gas by one degree
must do R units of work.



Heat Capacity at constant pressure has two terms:

Cp = heat added to increase KE + heat added to do work ‘

For n =1 mole and T,-T, = AT=1 degree:
KE change = A(KE) = (3/2) R AT = (3/2) R, (same as for C)
Work=w =R AT =R

C,=A(KE) +w=(32) R+R

‘ Predict C, = (5/2) R for an ideal gas. ‘

‘ Remember that C, = (3/2) R ‘




Heat Capacity Summary for Ideal Gases:
C, =(@3/2) R, KE change only. Note, C, independent of T.

C,=@/2) R+R, KE change + work. Also Independent
of T

C,/C, = [(5/2)RI/[(3/2)R] = 5/3

C,/C,=1.67

Find for monatomic ideal gases such as He, Xe, Ar, Kr, Ne
C,/C,=1.67



For diatomics and polyatomics find C /C, <1.67!

Since work argument above
P(V, - V,) =RT is simple and holds for all gases,

This suggests KE > (3/2)RT for diatomics,

This would make C /C, <1.67

A possible solution:

Equipartition Theorem: This is a very general law which
states that for a molecule or atom:

KE = (1/2)KT (or 1/2 RT on a mole basis) per degree of freedom.



A degree of freedom is a coordinate needed to describe
position of a molecule in space.

Example: A point has 3 degrees of freedom because
it requires three coordinates to describe its
position: (X, y, z).

Thus KE = 3(% kT) = %kT as for a monatomic gas

A diatomic molecule is a line (2 points connected by a
chemical bond). It requires S coordinates to describe its

position: x, y, z, 0, @

Z
P
’ o |\ (X,y,2)
~ | >
o ¥ < | Y

~d

KE = 5(1 kT) :§kT
2 2




Bonus * Bonus * Bonus * Bonus * Bonus * Bonus




