$$\frac{1}{2} \,\mathrm{mc}^2 \,=\, \frac{3}{2} \,(\mathrm{R} \,/\,\mathrm{N}_0)\mathrm{T}$$

R / N_0 is the (gas constant) / molecule and is called Boltzmann's constant **k** = (**R** / N_0)

$$\frac{1}{2} \operatorname{mc}^{2} = \frac{3}{2} \operatorname{kT}$$
Kool result!!
$$N_{0}(\frac{1}{2} \operatorname{mc}^{2}) = \frac{3}{2} \operatorname{RT}$$

 $N_0\left(\frac{1}{2} \text{ mc}^2\right)$ is the kinetic energy of one mole of gas atoms

Since $N_0 m = M$ (molecular weight) \rightarrow (1/2)Mc² = (3/2) RT

Units:
$$\frac{mc^2}{2}$$
 is a kinetic energy, therefore

$$PV = n\left(\frac{2}{3}\right)N_0\left(\frac{mc^2}{2}\right) \text{ must also have units of energy}$$

PV ~ [pressure] [volume]

= [(force / Area)] [(Area) (Length)]

PV ~ force × length

Energy = Force × Distance

Bonus * Bonus * Bonus * Bonus * Bonus * Bonus

Bonus * Bonus * Bonus * Bonus * Bonus * Bonus

Typical Molecular Speeds

Understand that $c = \sqrt{c^2} = c_{rms}$ [Root Mean Square Speed]

[Later we will define c_{rms} more fully.]

 $(1/2)mc^2 = (3/2)kT \rightarrow c = (3kT/m)^{1/2}$

Notice: $c = (3N_0kT/N_0m)^{1/2}$

[N₀ is Avagadro's number]

But $N_0 k = R$ and $N_0 m = M$ (molecular weight)

$$c = (3RT/M)^{1/2} \rightarrow c^2 = 3RT/M$$

Consider Gas with At wt of 0.001 Kg/mole (H atoms!) R= 8.314 Joules/mole-deg, T = 300 deg

 $c^2 = 3RT/M = 7.47 \times 10^6$ Joules/Kg = 7.47×10^6 (m/sec)²

Typical Molecular Speeds

Understand that $c = \sqrt{\overline{c^2}} = c_{rms}$ [Root Mean Square Speed]

$$(1/2)mc^2 = (3/2)kT \rightarrow c = (3kT/m)^{1/2}$$

Consider Gas with At wt of 0.001 Kg/mole (H atoms!)

m = (0.001 Kg / mole) / (6.02 × 10^{23} molecule / mole) = 1.66 × 10^{-27} Kg/molecule

 $k = 1.38 \times 10^{-23}$ Joules/molecule - deg, T = 300 deg

 $c^2 = 3kT/m = 7.47 \times 10^6$ Joules/Kg = 7.47×10^6 (m/sec)²

 $c = 2.73 \times 10^3$ m/sec (Fast Moving Particle)

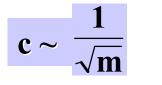
 $c = 1.37 \times 10^3$ m/sec for He = 0.004 Kg/mole

Note $c \sim T^{1/2} \rightarrow c_{1200} = 2 c_{300}$,

Note $\mathbf{c} \sim 1/\mathbf{m}^{1/2} \rightarrow \mathbf{c}_{\mathbf{H}_2} = 4\mathbf{c}_{\mathbf{O}_2}(\mathbf{M}_{\mathbf{H}_2} = 2, \mathbf{M}_{\mathbf{O}_2} = 32)$

Why do Light and Heavy Gases Exert Same Pressure at Constant V,T, n (# moles)? (p = nRT/V)

wall collision frequency/unit area = (1/6) (N/V) (Ac t)/(At) = (1/6) (N/V) c However, since



Lighter molecules collide with wall more frequently than heavy molecules!

BUT momentum change per collision ~ mc, with

$$\mathbf{mc} \sim \frac{\mathbf{m}}{\sqrt{\mathbf{m}}} \sim \sqrt{\mathbf{m}}$$

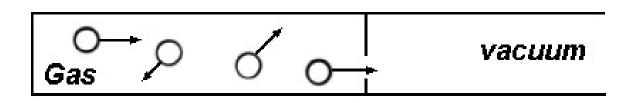
Thus, heavier molecules transfer more momentum per impact

Two effects cancel since $(1/m^{1/2}) \ge (m^{1/2})$ is independent of m

Result is that p scales like n, the number of moles or the number of particles! pV = nRT

Experimental Evidence for Kinetic Theory: Effusion

Put very small hole in box and measure # of molecules coming through. If hole is really small, molecules won't know it's there and will collide with hole at same rate as they collide with the wall.

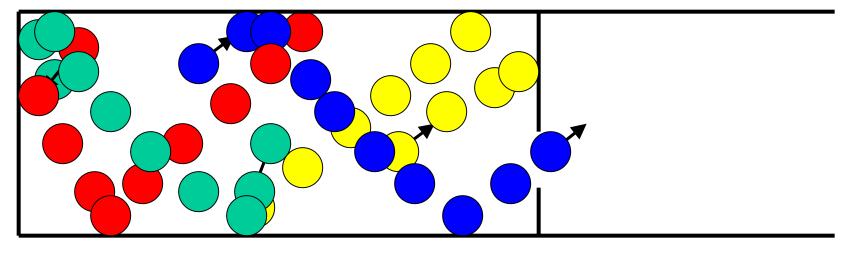


Effusion of Gases: The Movie

> QuickTime[™] and a Video decompressor are needed to see this picture.

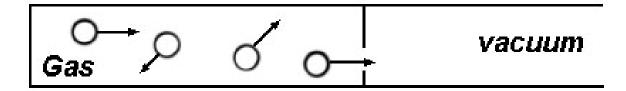
Note: ← Hole Must be very small!

Effusion of a Gas through a Small Hole



Gas

Vacuum



If hole area = A, rate at which molecules leave = (1/6) (N / V) Ac = R

For two different molecular speeds c_1 , c_2 and concentrations N_1/V , N_2/V :

$$\frac{\mathbf{R_1}}{\mathbf{R_2}} = \left[\left(\frac{\mathbf{N_1}}{\mathbf{V}}\right) / \left(\frac{\mathbf{N_2}}{\mathbf{V}}\right) \right] \left(\frac{\mathbf{c_1}}{\mathbf{c_2}}\right)$$

If $N_1 = N_2$ (equal initial concentrations)

$$\frac{R_1}{R_2} = \left(\frac{c_1}{c_2}\right) = \frac{\sqrt{\frac{3kT}{m_1}}}{\sqrt{\frac{3kT}{m_2}}} \longrightarrow \frac{(R_1/R_2) = (m_2/m_1)^{1/2}}{(m_2/m_1)^{1/2}}$$

For m_1 being H_2 and m_2 being $O_2 \rightarrow$

$$\frac{\mathbf{R}_1}{\mathbf{R}_2} = \sqrt{\frac{32}{2}} = 4$$

Find experimentally that light gases escape more quickly than heavy ones!

Experimental Evidence for Kinetic Theory: Heat Capacities

Definition: Heat in calories needed to raise temperature of 1 mole of a substance 1° centigrade.

Two kinds: C_p (add heat at constant pressure) C_v (add heat at constant volume)

Adding heat means adding energy. Energy goes two places:

(1) Increases kinetic energy of molecules: $KE = (1/2) mc^2, c^2 \sim T$

(2) Perform work. As we shall see shortly, no work is done at constant volume.

C_v: volume constant. All heat goes to KE. Compute as follows: KE [1 mole gas] = $\frac{1}{2}$ mc² × N₀ = $\frac{3}{2}$ kTN₀ = $\frac{3}{2}$ RT Increase T from T₁ to T₂: $KE_1 = (3/2)RT_1 \& KE_2 = (3/2)RT_2$ $KE_2 - KE_1 = \frac{3}{2}R(T_2 - T_1) =$ energy to increase T form T_1 to T_2 By definition when $T_2 - T_1 = 1^\circ$ KE₂ - KE₁ = C_y

 $C_v = (3/2) R$ (Independent of T for an ideal gas) $(C_v \cong 3 \text{ cal / mole - deg})$

C_p: Pressure constant so volume increases with increase in T. As we see below, work is done in this case:

To raise temperature of one mole of gas by one degree must do R units of work. Heat Capacity at constant pressure has two terms:

 C_p = heat added to increase KE + heat added to do work

For n = 1 mole and T_2 - $T_1 = \Delta T = 1$ degree:

KE change = Δ (KE) = (3/2) R Δ T = (3/2) R, (same as for C_v)

 $Work = w = R \Delta T = R$

$$C_p = \Delta(KE) + w = (3/2) R + R$$

Predict $C_p = (5/2)$ **R for an ideal gas.**

Remember that C_v = (3/2) R

Heat Capacity Summary for Ideal Gases:

 $C_v = (3/2) R$, KE change only. Note, C_v independent of T.

$$C_p/C_v = [(5/2)R]/[(3/2)R] = 5/3$$

 $C_{\rm p}/C_{\rm v} = 1.67$

Find for monatomic ideal gases such as He, Xe, Ar, Kr, Ne $C_p/C_v = 1.67$ For diatomics and polyatomics find $C_p/C_v < 1.67!$

Since work argument above $P(V_2 - V_1) = RT$ is simple and holds for all gases,

This suggests KE > (3/2)RT for diatomics,

This would make $C_p/C_v < 1.67$

A possible solution:

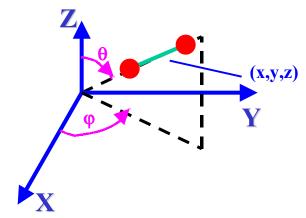
Equipartition Theorem: This is a very general law which states that for a molecule or atom:

KE = (1/2)kT (or 1/2 RT on a mole basis) per degree of freedom.

A degree of freedom is a coordinate needed to describe position of a molecule in space.

Example: A point has 3 degrees of freedom because
it requires three coordinates to describe its
position: (x, y, z).
Thus
$$KE = 3\left(\frac{1}{2}kT\right) = \frac{3}{2}kT$$
 as for a monatomic gas

A diatomic molecule is a line (2 points connected by a chemical bond). It requires 5 coordinates to describe its position: x, y, z, θ , ϕ



$$\mathbf{KE} = 5\left(\frac{1}{2}\,\mathbf{kT}\right) = \frac{5}{2}\,\mathbf{kT}$$

Bonus * Bonus * Bonus * Bonus * Bonus * Bonus