Delocalized Bonding in Metals

Consider Lithium metal. The Lithium atom has the atomic configuration 1s²2s¹ with the 2p level unfilled.

As in any molecule with a filled core shell like 1s², these electrons do not participate in bonding. Still, they form a delocalized band with 10²³ molecular orbitals that are completely filled.

The **valence** electrons 2s¹ and the unfilled 2p orbitals are more interesting. The 10²³ 2s atomic orbitals form a band of 10²³ "molecular" orbitals. This band is only **half** filled because each 2s¹ orbital has only **one** *e*.

There are three 2p orbitals on each atom leading to a band of 3×10^{23} molecular orbitals. This band is "empty" but overlaps in energy the 2s band \rightarrow

Delocalized Bonding in Metals (continued)

Consider now Berylium metal. The berylium atom has the atomic configuration 1s²2s² with the 2p level unfilled as in Li.

As in any molecule with a filled core shell like 1s², these electrons do not participate in bonding. Still, they form a delocalized band with 10²³ molecular orbitals that are completely filled, just as in Li.

The valence electrons 2s² and the unfilled 2p orbitals are again more interesting. The 10²³ 2s atomic orbitals form a band of 10²³ "molecular" orbitals. This band is however **completely** filled because each 2s² orbital now has **2** *e*⁻.

There are, as in Li, three 2p orbitals on each atom leading to a band of 3×10^{23} molecular orbitals. This band is "empty" but overlaps in energy the filled 2s band \rightarrow

Note that in both lithium and berylium (for different reasons) there are **unfilled** molecular orbitals at an energy infinitesemally greater than that of the **filled** M.O.'s. [E_{unfilled}-E_{filled}<<< kT]

In lithium this results because the lowest valence band is only **half full**, a feature that arises from the fundamental fact that lithium atoms have an **odd number of valence electrons**.

In berylium this results even though the lowest valence band is **full**, a feature that arises from the fundamental fact that berylium atoms have an **even number of valence electrons**.

However, in berylium the lowest filled valence band and the next to lowest, unfilled valence band overlap. This again gives the result: $[E_{unfilled}-E_{filled}<<< kT]$

Bonding in non-metals: Insulators and Semi-conductors Atoms such as carbon and boron do not conduct electricity as the pure solid. (In the case of carbon there is a conducting form of the solid called graphite. Graphite behaves like a metal (why?)). Here we will discuss the solid carbon form, diamond.

In diamond can think of each C atom as "bonded" to 4 other atoms at the corners of a tetrahedron: _____

Central Carbon atom contributes C 4 valence electrons and each C at the corners of the tetrahedron contributes one valence electron to form 4 bonds to central C This suggests sp³ local bonding.

Local bonding States in **Diamond**

Assign each C atom 4 localized sp³ tetrahedral bonds One such orbital from each pair of carbons combines

to make one **bonding** and one **antibonding** M.O.

To construct a band model for such a solid, take 10^{23} atoms. giving 4×10^{23} sp³ orbitals. Combine these to give 2 bands, each with half of the total orbitals: \rightarrow

Semiconductors

Silicon and Germanium are quintessential semiconductors. Note, they are under carbon in the periodic table. Thus, they have the valence electron structure ns²np² just as carbon has 2s²2p².

Bonding in these solids mimics that for the diamond structure that we just considered, **except** that the energy separation between the bonding and anti-bonding orbitals is **much smaller** than for the **insulator** carbon (diamond).

This results in a **forbidden zone** for the energy bands in Si and Ge that is much smaller than for diamond \rightarrow

The End!