Intensive Organic Chemistry for Freshmen C3045x

Computation of the Unsaturation Number from Molecular Formulae

Unsaturation/Ring Number: The number of double bonds or rings possessed by a molecule. A triple bond counts as two double bonds, or as one double bond and one ring, or as two rings.

Recipe for Hydrocarbons: Take molecular formula $\left(\mathrm{C}_{x} \mathrm{H}_{y}\right)$ and calculate $(x+1)-(Y / 2)$. The answer is the U / R number. This assumes a valence of 4 for carbon and 1 for hydrogen. Example: $\mathrm{C}_{6} \mathrm{H}_{6}-->(6+1)-(6 / 2)=7-3=4$. Thus the U / R number of $\mathrm{C}_{6} \mathrm{H}_{6}$ is 4 . Any molecular structure with the normal valences for carbon and hydrogen must possess a U/R number of 4 (no more; no less).

Test cases for $\mathrm{C}_{6} \mathrm{H}_{6}$:

Extension of Rule:

A. Oxygen just gets tacked on (assume valence of two)

$$
\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}} \mathrm{O}_{\mathrm{z}}-->(\mathrm{x}+1)-(\mathrm{y} / 2)
$$

1. $\mathrm{CH}_{4} \mathrm{O}-->(1+1)-(4 / 2)=2-2=0$
$\mathrm{CH}_{3} \mathrm{OH}$ saturated
2. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}-->(2+1)-(4 / 2)=1$
$\mathrm{CH}_{2}=\mathrm{CHOH}$
a $C=C$ double bond

a $\mathrm{C}=\mathrm{O}$ double bond

a ring
3. $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}-->(3+1)-(4 / 2)=2$
$\mathrm{H}-\mathrm{C} \quad \mathrm{C}-\mathrm{CH}_{2} \mathrm{OH}$
$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}-\mathrm{O}$
$\mathrm{CH}-\mathrm{CH}-\mathrm{CH}_{3}$
O
CHOH
B. Halogen is the same as hydrogen

$$
\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}} \mathrm{X}_{\mathrm{z}}-->(\mathrm{x}+1)-(\mathrm{y}+\mathrm{z}) / 2
$$

Examples:

1. $\mathrm{CHBr}_{3}-->(1+1)-(1+3) / 2=\mathrm{O}$
2. $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{2}-->(2+1)-(2+2) / 2=1$
3. $\mathrm{C}_{3} \mathrm{HClBrF}-->(3+1)-(1+1+1+1) / 2=4-2=2$

Problems:

1. What is the unsaturation number formula for a compound containing C, H, and N ? Containing C, H, and S ?
2, \quad Calculate the U / R number for molecules possessing the following molecular formulae and draw three structures corresponding to each example.
(a) $\mathrm{C}_{7} \mathrm{H}_{9}$
(b) $\mathrm{C}_{4} \mathrm{H}_{4}$
(c) $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$
(d) $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$
(e) $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}$
(f) $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}$
