Intensive Organic Chemistry for Freshmen

Problem Set 7

Due:March.30.2001

1. Prepare R-enantiomer of 4 from a racemic mixture.

2. Propose an enantioselective synthesis of intermediate **5** from the given starting material.

- **3.** a) Sketch 1 H-NMR of cyclohexanone in CDCl₃. Clearly indicate the chemical shifts (δ scale) and the relative integration values.
- b) To this solution (3a) was added THF and D_2O . The resulting homogeneous solution (THF is miscible with both CDCl₃ and D_2O) was acidified with catalytic amount of DCl, and allowed to sit for 24 hrs. Sketch the resulting 1H -NMR spectrum.
- **4.** Explain the following facts. More specifically, why does α -bromination of a ketone leads to bromoform under basic conditions while monobromo ketones are obtained under acidic conditions. (Hint: mechanism, fast vs slow steps)

5. Explain the following unexpected result (Favorskii rearrangement) accounting for data from the labeling experiment (¹³C isotope)

6. Draw products of the following reactions.

7. Which of these enolates will predominate?

8. Predict and explain the products of the following transformations.

a)
$$\frac{1. \text{ LDA, THF, -78}^{\circ}\text{C}}{2. \text{ H}_{3}\text{O}^{+}}$$

9. Draw the final product of the given sequence.

DME: 1,2-dimethoxy ethane

10. Synthesize 2,6-dimethyl cyclohexanone from cyclohexanone.

11. Synthesize product 2 from 1.

- 12. A hypothetical enzyme (or synth. Catalyst) performs the following reaction.
- a) What is the name of this reaction?
- b) Why would it be valuable to obtain such an enzyme?

