Organic Chemistry c3444y ## 1st Hour Exam Monday, Feb. 22, 1999 Prof. Leighton | Name: | ID # | |--|---| | Signature: | | | Write your name on every page. | | | ■ The exam is 5 pages long (not including this | one). Please make sure you have all of the pages. | | ■ Stay calm, and write complete but succinct a | nswers. Good Luck! | | | | | Question 1 (20 pts): | | | | | | Questi on 2 (10 pts): | | | | | | Questi on 3 (20 pts): | | | | | | Questi on 4 (20 pts): | | | | | | Questi on 5 (30 pts): | | | | | | | | Total (100 pts):____ 1. a. (10 pts) It has been observed that the following molecule undergoes unusually facile rotation about the central double bond, whereas "normal" double bonds will not rotate in such a manner. Using resonance structures, provide a simple explanation for this phenomenon. $$H_3C$$ CH_3 H_3C H_3C H_3C b. (10 pts) Make a prediction as to the relative stability of the illustrated compound. Would you expect it to be unusually stable, unusually unstable, or about the same as a regular polyene? Use resonance structures to provide a simple explanation for your answer. 2. (10 pts) Consider the S_N1 reactions of the illustrated allylic chlorides. As expected, compound A reacts quite readily. However, under the same conditions compound B is quite inert. Recalling that the rate-determining step in the S_N1 reaction is the loss of chloride to form a cation, explain why compound B does not readily undergo S_N1 reaction. 3. Provide detailed mechanisms for the following transformations: b. (10 pts) Provide an explanation for the fact that the nitroso group (NO) is a deactivator, but an ortho/para director. 5. Propose syntheses of the following compounds from the given starting materials.