| | 1 | |--|---| | | | | | | ## ANSWER KEY | CHEMISTRY F14
PROFESSOR J. M | AM 10/11/99 | | |---------------------------------|--------------------|----------------| | PRINT NAME, L | AST: | | | FIRS | | | | I.D.# | # : | | | MAXII | MUM POINT VALUE IS | IN PARENTHESES | | 1(6) | 9(6) | 17(6) | | 2(15) | 10(6) | 18(6) | | 3(15) | 11(6) | 19(6) | | 4(15) | 12(6) | 20(6) | | 5(15) | 13(6) | 21(6) | | | 14(6)
15(6) | 22(6)
23(6) | | , , | 16(6) | 24(6) | | COLUMN TO | TALS (MAXIMUM): | | | (81) | (48) | (48) | | EXAM TOTAL | (165 pts) | OUT OF 100 | ## USE THE FOLLOWING INFORMATION FOR PROBLEMS 1 AND 2 Given the following 3 reactions: 1. FeSO₃ $$\longrightarrow$$ FeO + SO₂ 2. $$Fe(HSO_3)_2$$ \longrightarrow $FeO + 2SO_2 + H_2O$ and 3. $$2 \text{ NaHSO}_3 \longrightarrow \text{Na}_2\text{O} + 2 \text{ SO}_2 + \text{H}_2\text{O}$$ You are given a mixture of iron(II)sulfite (FeSO $_3$), iron(II)hydrogensulfite (Fe(HSO $_3$) $_2$) and sodium hydrogensulfite (NaHSO $_3$). When heated this mixture completely reacts as shown above, forming 57.6O g of SO $_{2(g)}$, 5.4O g of H $_2$ O , and O.1OO mol Na $_2$ O . 1) Calculate the number of moles of H₂O and of SO₂ formed. (6 pts) $$n_{\text{H2O}} = \frac{5.40}{18.0} = 0.3\text{OO}$$ $n_{\text{SO2}} = \frac{57.60}{64.0} = 0.900$ ANSWER IS (H_2O) : 0.3OO ANSWER IS (SO_2) : 0.900 2) Calculate the number of moles of $FeSO_3$, $Fe(HSO_3)_2$, and $NaHSO_3$ present initially. SHOW WORK (OR REASONING) (15 pts - 5 pts each part) To produce 0.100 mol of Na₂O requires 0.200 mol of NaHSO₃ which also produces 0.200 mol of SO₂ and 0.100 mol H₂O from rxn 3 \therefore 0.200 mol H₂O came from rxn 2 along with 0.400 mol of SO₂ requiring 0.200 mol of Fe(HSO₃)₂. The remaining 0.300 mol of SO_2 came from 0.300 mol of FeSO_3 . \underline{n}_{NaHSO3} is: $\underline{0.200}$ $\underline{n}_{Fe(HSO3)2}$ IS: $\underline{0.200}$ \underline{n}_{FeSO3} IS: $\underline{0.300}$ 3) Given the following 3 reactions: 1. $$FeSO_3$$ \longrightarrow FeO + SO_2 2. $$Fe_2(SO_3)_3$$ \longrightarrow $Fe_2O_3 + 3 SO_2$ and 3. $FeCO_3$ \longrightarrow FeO + CO_2 Starting with 3 moles <u>total</u> of $FeSO_3$, $FeCO_3$, and $Fe_2(SO_3)_3$, 1.5 moles of CO_2 and 2.5 moles of FeO are obtained. Calculate the starting number of moles of $Fe_2(SO_3)_3$ and the total number of moles of SO_2 produced. SHOW WORK (OR REASONING) (15 pts) CO_2 only comes from rxn 3 \therefore 1.5 mol FeO were also produced in rxn 3 from 1.5 mol FeCO₃. Of the 2.5 mol FeO, the remaining 1.0 mol came from rxn 1 requiring 1 mol FeSO₃. \therefore there must be 0.5 mol of $Fe_2(SO_3)_3$ (which would produce 1.5 mol SO_2). Rxn 1 also produces 1 mol SO_2 (from 1 mol $FeSO_3$). moles of $Fe_2(SO_3)_3$: 0.5moles of SO_2 : 2.5 ## USE THE FOLLOWING INFORMATION FOR PROBLEMS 4 AND 5 A mixture of ZnCl₂ and ZnSO₄ weighing 8.513 g was dissolved in water. The mixture was allowed to react with solid aluminum and the following two reactions occurred. The total weight of solid zinc produced was 3.707 g. (molar masses: Zn (65.38 g), Al (26.98 g), ZnCl₂ (136.28), ZnSO₄ (161.38) 1. $$3 \operatorname{ZnCl}_{2(aq)} + 2 \operatorname{Al}_{(s)} \longrightarrow 3 \operatorname{Zn}_{(s)} + 2 \operatorname{AlCl}_{3(aq)}$$ and 2. $$3 \operatorname{ZnSO}_{4(aq)} + 2 \operatorname{Al}_{(s)} \longrightarrow 3 \operatorname{Zn}_{(s)} + \operatorname{Al}_{2}(\operatorname{SO}_{4})_{3}$$ 4) Calculate the weight of ZnCl₂ present in the original mixture. **SHOW WORK** $$8.513 \text{ g} = \text{W}_{\text{ZnCl2}} + \text{W}_{\text{ZnSO4}} \qquad \parallel \quad n_{\text{Zn(TOTAL})} = \frac{3.707}{65.38} = 0.05670$$ $$n_{\text{Zn(TOTAL})} = 0.05670 = n_{\text{Zn(1)}} + n_{\text{Zn(2)}} = n_{\text{ZnCl2}} + n_{\text{ZnSO4}}$$ $$0.05670 = \frac{\text{W}_{\text{ZnCl2}}}{136.28} + \frac{8.513 \cdot \text{W}_{\text{ZnCl2}}}{161.38} \qquad \therefore \text{W}_{\text{ZnCl2}} = 3.46 \text{ g}$$ ANSWER IS: 3.46 g 5) Calculate the <u>total</u> weight of aluminum used. THE ANSWER FOR THIS PART IS <u>NOT</u> DEPENDENT UPON YOUR ANSWER FOR QUESTION 4. SHOW WORK $$n_{Al(total)} = (\frac{2}{3})n_{Zn(total)} = (\frac{2}{3})(0.05670) = 0.0378 \text{ mol}$$ $$\therefore$$ W_{Al} = n_{Al(total)} F_{Al} = (0.0378(26.98) = 1.02 g ANSWER IS: 1.02 g 6) A 0.20 mol sample of a hydrocarbon, C_xH_y reacts with 1.3 mol of O_2 gas, to yield 1.6 mol <u>TOTAL</u> of CO_2 and H_2O . The molecular formula of C_xH_y is; $$\begin{array}{lll} \text{a) } C_4 H_2 & \text{b) } C_4 H_4 & \text{c) } C_4 H_6 & \text{d) } C_4 H_{10} & \text{e) } C_5 H_4 \\ \text{f) } C_5 H_6 & \text{g) } C_5 H_8 & \text{h) } C_5 H_{10} & \text{i) } C_5 H_{12} \\ \end{array}$$ ANSWER IS: $\underline{\mathbf{f}}$ 7) A compound has the formula $C_x H_y O_z Cl_w$. 7.80 g of this compound is burned producing 0.200 mol of CO_2 , 2.27 g of H_2O , and ultimately 0.100 mol of AgCl. What is the empirical formula of this compound? HINT: First obtain the weights of hydrogen and oxygen in the original compound. ATOMIC WEIGHTS: H (1.00), C (12.00), O (16.00), Cl (35.50) a) $$C_2H_3O_2Cl_2$$ b) $C_4H_5OCl_2$ c) $C_4H_6O_2Cl$ d) $C_6H_8O_2Cl_4$ e) $C_4H_5O_2Cl_2$ -100 10 $$W_{O2} = 7.80 - 2.40 - 3.55 - 0.25 = 1.60 \ g \ OR \ 0.100 \ mol \ of \ atoms$$ ANSWER IS: e 8) The following gaseous reaction occurs in a vessel of 5O.O L volume at 3OO K. $$H_2S + 3F_2 \longrightarrow 2HF + SF_4$$ Initially, three moles of H_2S and six moles of F_2 are mixed in this vessel. The reaction then occurs until the reactant in limiting quantity is totally consumed. (15 pts - 5 pts each part) Molar masses: $H_2S(34.0)$, $F_2(38.0)$, HF(20.0), $SF_4(108.0)$ a) Which reactant is limiting? ANSWER IS: \underline{F}_2 b) How many moles of the reactant in excess remain, when the reaction is complete? ANSWER IS: one (1) c) What is the mole ratio of HF to SF_4 produced, $\frac{n_{HF}}{n_{SF4}}$? ANSWER IS: $\frac{n_{HF}}{n_{SF4}} = \frac{2}{1} = 2$ - 9) The spatial appearance of the SF_4^{2-} ion is, (GROUP NUMBERS: S (6); F (7)) - a) tetrahedral - b) seesaw - c) square planar - d) pyramidal ANSWER IS: c 10) The mass in grams of a single molecule of C₃H₆ is.... (at. wt: $$C = 12.0$$, $H = 1.0$) - a) 7×10^{23} - b) 7 x 10⁻²¹ - c) 7 x 10⁻²² - d) 7 x 10⁻²³ - e) 42 ANSWER IS: d e)168.9 - 11) Element X reacts with oxygen to form a pure sample of X_2O_3 In an experiment it is found that 1.0000g of X produces 1.1596 g of X_2O_3 . Using the known atomic weight of oxygen, 16.000 g/mol , calculate the atomic weight of X. - a) 20.70 b) 66.85 c) 100.2 - e) 100.2 d) 150.4 - $W_x = 1.0000g$: $W_o = 0.1596 g$ $$\frac{1.0000}{(2)(F)} = \frac{0.1596}{(3)(16)} \qquad \therefore 2F = 300.8 \ (= 2 \ atomic \ weights \ of \ X)$$ $$\therefore F = 150.4$$ Give 3 PTS if they give $\underline{\underline{C}}$ as the answer! Answer is: $\underline{\underline{d}}$ 12) Complete the following table (<u>isotopic symbols are hypothetical</u>) Symbol Atomic Number # of neutrons mass number # of electrons | $^{\mathrm{x}}_{12}\mathrm{M}^{2+}$ | <u>12</u> | 13 | <u>25</u> | <u>10</u> | |--|-----------|-----------|-----------|-----------| | ³¹ _Y A ³⁻ | 15 | <u>16</u> | <u>31</u> | <u>18</u> | - 13) Give the conjugate acid of NHOH⁻. - 14) Give the hydrated form of the anhydrous acid $\mathrm{Br_2O_3}$. ANSWER IS: HBrO₂ ANSWER IS: NH₂OH 15) give the formula for the anhydrous form of $\mathrm{H_2SeO_3}\,$. ANSWER IS: SeO₂ - 16) Beaker A contains O.100 L of an O.20 M KOH solution; beaker B contains O.100 L of an O.10 M H₂SO₄ solution. The contents of both beakers are thoroughly mixed together in a sufficiently large third beaker. The resulting solution is; (HINT: BALANCE EQUATION(S) CAREFULLY) - a) O.O5 M in K_2SO_4 - b) O.O5 M in both KHSO₄ and KOH - c) O.10 M in K₂SO₄ - d) O.10 M in both KHSO₄ and KOH - e) O.1O M in $\ensuremath{\mathsf{KHSO_4}}$ - f) O.10 M in KOH GIVE 3 PTS IF THEY GIVE \underline{b} AS THE ANSWER! ANSWER IS: $\underline{\mathbf{a}}$ 17) Draw a Lewis structure for C_3H_4 . If possible satisfy the octet rule and covalency. ## ANY ONE OF THE ABOVE IS ACCEPTABLE 18) Write the oxidation number above the symbol of each atom that changes oxidation state in the course of reaction. $$^{+7}$$ $^{+3}$ $^{+4}$ $^{+6}$ 2 1 2 19) Give the formal charge of each indicated atom in the following molecule. atom 1 = O atom 2 = +1 atom 3 = -1 20) Indicate which <u>reactant species</u> is the Lewis acid and which is the Lewis base in the following reaction. ACID BASE $$HgCl_{2} + BCl_{4}^{-} \longrightarrow HgCl_{3}^{-} + BCl_{3}$$ 21) Given the reaction: $$2 \ C_5 H_{1O(g)} + 15 \ O_{2(g)} ----> \ 10 \ CO_{2(g)} + 10 \ H_2 O_{(g)}$$ How many liters of CO_2 were recovered by burning 16 L of C_5H_{1O} ? (P and T constant) if the percent yield was 75 %. - a) 55 L - b) 60 L - c) 70 L - d) 75 L - e) 80 L ANSWER IS: b - 22) GIVEN: ZrCl₂ is zirconium(II)chloride; ZrCl₄ is; NaVO₃ is sodium vanadate. For the following: where there is a formula, give it's name; where there is a name, give it's formula. (1 point each.) - i) $Zr(SO_4)_2$: zirconium(IV) sulfate ii) SF_6 sulfur hexafluoride iii) zirconium(II)vanadate: $Zr(VO_3)_2$ - iv) CrBr₃: chromium(III) bromide OR chromic bromide - v) ferric phosphate: FePO₄ vi) aluminum chromate $$Al_2(CrO_4)_3$$ BALANCE THE FOLLOWING EQUATIONS BY INSERTING $\underline{\text{INTEGERS}}$ IN THE SPACES PRECEDING THE FORMULAS. 23) $$C_3H_8O + KCIO_4 \longrightarrow CO_2 + H_2O + KCI$$ $\underline{4}C_3H_8O + \underline{9}KCIO_4 \longrightarrow \underline{12}CO_2 + \underline{16}H_2O + \underline{9}KCI$