## REMOVE THIS PAGE PRIOR TO STARTING EXAM.

## ANSWER KEY

| CHEMISTRY F14O3 THIRD EXAM PROFESSOR J. MORROW |             |            |               | 12/8/99    |       |  |
|------------------------------------------------|-------------|------------|---------------|------------|-------|--|
| PRINT                                          | NAME, LAST  | T          |               |            |       |  |
| FIRST:                                         |             |            |               |            |       |  |
|                                                |             |            |               |            |       |  |
|                                                | MAXIMU      | JM POINT V | ALUE IS IN PA | RENTHESES  |       |  |
| 1                                              | (10)        | 7          | (10)          | 13         | (20)  |  |
| 2                                              | (20)        | 8          | (10)          | 14         | (10)  |  |
| 3                                              | (15)        | 9          | (10)          | 15         | (15)  |  |
| 4                                              | (15)        | 10         | (10)          | 16         | (20)  |  |
| 5                                              | (20)        | 11         | (10)          | 17         | (20)  |  |
| 6                                              | (20)        | 12         | (10)          | 18         | (20)  |  |
| CC                                             | DLUMN TOTA  | LS (MAXIN  | ИUМ):         |            |       |  |
| (100)                                          |             |            | (60)          |            | (105) |  |
| EXA                                            | M TOTAL (20 | 05 pts)    |               | OUT OF 100 |       |  |

1) Given the following table of thermodynamic data for the indicated species. All of the following species are in the gaseous state at 298 K.

| SPECIES S             | $\int_{0}^{\infty} \left(\frac{J}{\text{mol} \cdot K}\right) = \Delta H^{0}$ | $f(\frac{kJ}{mol})$ |
|-----------------------|------------------------------------------------------------------------------|---------------------|
| CO <sub>2</sub> 213.7 | 9 -393.5                                                                     | 51                  |
| NO <sup>-</sup>       | 214.86                                                                       | ?                   |
| CO <sub>2</sub>       | 218.70 -441.4                                                                | 4O                  |
| NO                    | 210.76                                                                       | 90.29               |

For the following reaction,  $K_p = 2.189 \text{ x } 10^{-7}$ 

$$CO_2^- + NO \longrightarrow CO_2 + NO^-$$

Calculate  $\Delta G^{o}_{rxn}$  (in kJ) at 298 K for this reaction. (10 pts)

$$\Delta G^{0} = - RT \ln K_{p} = -(8.314 \times 10^{-3})(298) \ln(2.189 \times 10^{-7}) = 38.00 \text{ kJ}$$

$$\Delta G^{o}_{rxn} = \underline{\hspace{1cm}}$$

2) Calculate  $\Delta H^{o}_{f}$  (in kJ) for NO at 298 K for the reaction using the data from problem 1. (20 pts) SHOW WORK

$$CO_2^- + NO \longrightarrow CO_2 + NO^-$$

 $T\Delta S_{rxn} = (298)(214.86 + 213.79 - 218.70 - 210.76)(10^{-3}) = -0.241 \text{ kJ}$  (FROM TABLE)

$$\Delta H_{rxn} = (\Delta H^{o}_{f} + (-393.51) - (-441.40) - (90.29)) = \Delta H^{o}_{f} - 42.40 \text{ kJ} \qquad (FROM TABLE)$$

$$\Delta G_{\rm rxn} = \Delta H_{\rm rxn} - T\Delta S_{\rm rxn}$$
 :  $38.00 = \Delta H^{\rm o}_{\rm f} - 42.40 \text{ kJ} - (-0.241)$   
 $\Delta H^{\rm o}_{\rm f} = 80.2 \text{ kJ}$ 

$$\Delta H^{0}_{f} = \underline{\hspace{1cm}}$$

3) Using the ion-electron method, balance the following reaction under the conditions given. Show the balanced oxidation and reduction half reactions where indicated. Write your answers in the space provided.

$$C_3H_4O_4 + S_2O_6^{2-} \longrightarrow CH_3OH + 2CO_{2(g)} + SO_{2(g)}$$
 (acidic)

oxidation half reaction: (5 pts)

$$C_3H_4O_4 + H_2O \longrightarrow CH_3OH + 2CO_2 + 2H^+ + 2e^-$$

reduction half reaction: (5 pts)

$$2 e^{-} + 4 H^{+} + S_{2}O_{6}^{2-} \longrightarrow 2 SO_{2} + 2 H_{2}O_{2}$$

ANSWER: (5 pts) Subscripts need NOT be shown in final answer.

BAL EQ. 
$$C_3H_4O_4 + S_2O_6^{2-} + 2H^+ \longrightarrow CH_3OH + 2CO_2 + 2SO_2 + H_2O$$

4) 
$$MnO_{4 \text{ (aq)}}^{-} + S^{2-}_{\text{(aq)}} \longrightarrow MnS_{2(S)} + S^{0}_{\text{(S)}}$$
 (basic)

oxidation half reaction: (5 pts)

$$S^{2-}_{(aq)} \longrightarrow S^{0}_{(S)} + 2 e^{-}$$

reduction half reaction: (5 pts)

$$3 e^{-} + 8 H^{+} + MnO_{4}^{-} + 2 S^{2-} \longrightarrow MnS_{2} + 4 H_{2}O$$

ANSWER: (5 pts) Subscripts need NOT be shown in final answer.

$$16 \text{ H}^+ + 2 \text{ MnO}_4^- + 7 \text{ S}^{2^-} \longrightarrow 2 \text{ MnS}_2 + 3 \text{ S}^0 + 8 \text{ H}_2\text{O} \text{ (ACIDIC)}$$
  
 $8 \text{ H}_2\text{O} + 2 \text{ MnO}_4^- + 7 \text{ S}^{2^-} \longrightarrow 2 \text{ MnS}_2 + 3 \text{ S}^0 + 16 \text{ OH}^-\text{(BASIC SOL'N)}$ 

5) The vapor pressure of water at 298 K is O.O3132 atm. The standard free energy of formation of  $H_2O_{(\ell)}$ ,  $\Delta G^o{}_f$ , is -237.2 kJ/mol also at 298 K. Using this information, calculate the standard free energy of formation,  $\Delta G^o{}_f$  (in kJ), of  $H_2O_{(g)}$ . BE CAREFUL USING THE DEFINITION OF EACH TERM! (20 pts) SHOW WORK

GIVEN: For the reaction, 
$$H_2O_{(\ell)} \longrightarrow H_2O_{(g)}$$
,  $\Delta G_{rxn} = - RT \ln P_{(atm)}$   
a) - 224.3 b) - 232.9 c) - 245.8 d) - 228.6  $H_2O_{(\ell)} \longrightarrow H_2O_{(g)}$   $\Delta G_{rxn} = \Delta G^o_{f(g)} - \Delta G^o_{f(\ell)} = -RT \ln P = -(8.314)(298)\ln(0.03132)$   $\Delta G_{rxn} = \Delta G^o_{f(g)} - (-237.2 \text{ kJ/mol}) = 8581 \text{ J/mol} = 8.581 \text{ kJ/mol}$   $\Delta G^o_{f(g)} = 8.581 - 237.2 = -228.6 \text{ kJ/mol}$ 

ANSWER IS: d

6) The equilibrium constant for the reaction

$$I_2$$
 +  $C_5H_8$   $\longrightarrow$   $HI$  +  $C_5H_7I$  cyclopentene iodocyclopentene

was measured spectrophotometrically in the gas phase between

175°C and 415°C. The following equation was obeyed:

$$\log_{10} K_{p_{(atm)}} = -\frac{2611.4}{T} + 7.55$$

Calculate  $\Delta H^{o}$  and  $\Delta S^{o}$  for this reaction (20 pts)

**SHOW WORK** 

a) 
$$\Delta H^{0} = 25.0 \text{ kJ}$$
 b)  $\Delta H^{0} = 50.0 \text{ kJ}$  c)  $\Delta H^{0} = 21.7 \text{ kJ}$  d)  $\Delta H^{0} = 25.0 \text{ kJ}$  e)  $\Delta H^{0} = 50.0 \text{ kJ}$   
 $\Delta S^{0} = 78 \text{ J}$   $\Delta S^{0} = 145 \text{ J}$   $\Delta S^{0} = 63.0 \text{ J}$   $\Delta S^{0} = 145.0 \text{ J}$   $\Delta S^{0} = 63.0 \text{ J}$ 

c) 
$$\Delta H^0 = 21.7 \text{ kJ}$$

1) 
$$\Delta H^0 = 25.0 \text{ kJ}$$

e) 
$$\Delta H^0 = 50.0 \text{ k}$$
.

$$\begin{split} & \ln \, \text{K} = \, - \, \frac{\Delta G^o}{RT} \quad \log_{10} \, \text{K} = \, - \, \frac{\Delta G^o}{2.303 RT} \quad = \, - \frac{\Delta H^o}{2.303 RT} \, + \, \frac{\Delta S^o}{2.303 R} \\ & - \frac{\Delta H^o}{2.303 RT} \quad = \, - \, \frac{2611.4}{T} \qquad \qquad \text{AND} \qquad \qquad \frac{\Delta S^o}{2.303 R} \, = \, 7.55 \end{split}$$

$$\Delta H^{0} = 50.0 \text{ kJ} \text{ AND}$$
  $\Delta S^{0} = 145 \text{ J}$ 

(15 pts) ANSWER IS: b

7) If equal pressures (1 atm each) of I<sub>2</sub> and cyclopentene (see question 6) are mixed at 300°C, what will be the equilibrium partial pressure of HI (in atm)? (10 pts) SHOW WORK

a) 0.21 b) 0.044 c) 0.46 d) 0.12 e) 0.34 
$$\log_{10}K_{p(atm)} = -\frac{2611.4}{300} + 7.55 \therefore K_{p} = 0.0700 = \frac{x^{2}}{(1-x)^{2}}$$
$$x = 0.209 \text{ atm} = P_{HI} (= 0.21 \text{ atm})$$

(15 pts) ANSWER IS: 0.21

8) If an ideal gas is expanded at constant temperature, then;

a) 
$$\Delta E > 0$$
 and  $\Delta S > 0$ 

a) 
$$\Delta E > 0$$
 and  $\Delta S > 0$  b)  $\Delta E = 0$  and  $\Delta S = 0$  c)  $\Delta E = 0$  and  $\Delta S < 0$ 

$$\Delta E = 0$$
 and  $\Delta S < 0$ 

d) 
$$\Delta E < 0$$
 and  $\Delta S > 0$  e)  $\Delta E = 0$  and  $\Delta S > 0$ 

e) 
$$\Delta E = 0$$
 and  $\Delta S > 0$ 

ANSWER IS: e

9) If  $\Delta G^{o}_{f}(HI_{(g)}) = 1.70 \text{ kJ}$  what is the equilibrium constant at 25°C for the reaction, 2  $HI_{(g)}$  $H_{2(g)} + I_{2(s)}$  ? (10 pts)

- a) 3.9
- b) 2.0
- c) 0.69
- d) 0.50
- e) 0.25

ANSWER IS: a

10) For the reaction,  $H_2O_{(\ell)} \longrightarrow H_2O_{(g)}$  at  $100^{\circ}$ C and 1 atm pressure, which of the following is (10 pts) true :

- a)  $\Delta H = 0$  b)  $\Delta S = 0$  c)  $\Delta H = \Delta E$  d)  $\Delta H = T\Delta S$  e)  $\Delta H = \Delta G$

ANSWER IS: d

- 11) For the gas phase decomposition,  $PCl_{5(g)} = PCl_{3(g)} + Cl_{2(g)}$ (10 pts)
- c)  $\Delta H > 0$  and  $\Delta S < 0$ a)  $\Delta H < 0$  and  $\Delta S < 0$  b)  $\Delta H > 0$  and  $\Delta S > 0$ d)  $\Delta H < 0$  and  $\Delta S > 0$ e)  $\Delta H = 0$  and  $\Delta S > 0$

ANSWER IS: b

12) You are given four reactions along with their equilibrium constants and heats of reaction: (10 pts)

| REACTION | <u>K</u> |                | $\Delta H_{rxn}$ |                |
|----------|----------|----------------|------------------|----------------|
| 1.       |          | K <sub>1</sub> |                  | $\Delta H_1$   |
| 2.       |          | $K_2$          |                  | $\Delta H_2$   |
| 3.       |          | $K_3$          |                  | $\Delta H_3$   |
| 4.       |          | $K_{4}$        |                  | $\Delta H_{4}$ |

You want to combine these four reactions to obtain a fifth reaction.

If for the fifth reaction,  $K_5 = \frac{K_2 K_{4}^3}{K_1 K_2^2}$ , then  $\Delta H_5 =$ 

- a)  $\Delta H_2 + 2\Delta H_4 \Delta H_1 3\Delta H_3$  b)  $\Delta H_2 + 3\Delta H_4 \Delta H_1 2\Delta H_3$  c)  $\Delta H_1 + 2\Delta H_3 \Delta H_2 3\Delta H_4$  d)  $3\Delta H_2 + \Delta H_4 \Delta H_1 2\Delta H_3$

ANSWER IS: b

13) Correlate each of the curves in the figure with the appropriate reaction. 20 pts - 5 pts each answer

HINT: 
$$\ln K_p = -\frac{\Delta H}{RT} + \text{constant } (y = mx + b), \text{ and, } \Delta G^o = -RT \ln K_p$$



|        | T/T                |                                                                                                             |          |                                                                                                                                    |
|--------|--------------------|-------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------|
|        | $\Delta G^{o}(kJ)$ | $\Delta H^{o}$ (kJ)                                                                                         |          | <b>ANSWERS</b>                                                                                                                     |
| - 16.4 | - 41               |                                                                                                             | <u>b</u> |                                                                                                                                    |
| - 9.8  | + 2O               |                                                                                                             | <u>c</u> |                                                                                                                                    |
| - 14.8 | + 20               |                                                                                                             | <u>d</u> |                                                                                                                                    |
| - 24.6 | - 41               |                                                                                                             | <u>a</u> |                                                                                                                                    |
|        | - 9.8<br>- 14.8    | $ \begin{array}{ccc}  & \Delta G^{o} \text{ (kJ)} \\ -16.4 & -41 \\ -9.8 & +20 \\ -14.8 & +20 \end{array} $ |          | $ \frac{\Delta G^{o} (kJ)}{-16.4} \frac{\Delta H^{o} (kJ)}{-41} \frac{b}{c} $ $ -9.8 + 2O \frac{c}{d} $ $ -14.8 + 20 \frac{d}{d} $ |

GIVEN THE FOLLOWING PISTON FOR USE IN QUESTIONS 14 and 15.

$$P_{\rm ex} = 0.86 \text{ atm}$$

14) A 1.25 L sample of a gas is heated and expands against a constant pressure of 0.86 atm to a final volume of 3.75 L. Calculate the work done by this gas during the expansion in joules. THIS IS QUESTION 54 FROM YOUR TEXTBOOK.

(10 pts)

$$W = -P_{ex}\Delta V = -(0.86)(3.75 - 1.25)(101.3)$$
$$W = -217.8 \text{ J}$$

ANSWER IS:

15) The above piston contains 0.50 mol of an inert gas at an initial temperature of 300 K. An adiabatic expansion now occurs with the volume changing from 1.25 L to 3.75 L at a constant external pressure of 0.86 atm.

Calculate the final temperature,  $T_f$  (in Kelvin), in the piston at the end of this expansion. Given:  $C_{v,m} = 12.47 \frac{J}{\text{deg:mol}}$  . (15 pts)

$$\Delta E = nC_{v,m}\Delta T = W$$
  $\therefore \Delta T = \frac{W}{nC_{v,m}} = \frac{-217.8}{(0.5)(12.47)} = -34.9^{\circ}(=-35^{\circ})$   
 $\therefore T_f = 265 \text{ K}$ 

ANSWER IS: 265 K

16) 5O.O g of ice at O°C are mixed with 4O.O g of liquid (water) at O°C and an unknown mass of liquid (water) at 75°C. At equilibrium the final temperature of the entire system is 1O°C. Calculate the starting mass of liquid at 75°C. (20 pts) SHOW WORK

GIVEN: specific heat of liquid =  $4.18 \text{ J/g} \cdot \text{deg}$ ; heat of fusion = 333 J/g.

a) 15.0 g b) 75.1 g c) 25.5 g d) 50.1 g e) 30.2 g 
$$q_1 \qquad q_2$$
 
$$H_2O_{(S)} \longrightarrow H_2O_{(\ell)} \longrightarrow H_2O_{(\ell)}$$
 50g, 0°C 50g, 10°C 
$$q_3 \qquad q_4$$
 
$$H_2O_{(\ell)} \longrightarrow H_2O_{(\ell)} \longrightarrow H_2O_{(\ell)}$$
 40g, 0°C 40g, 10°C 
$$m, 75^{\circ}C \qquad m, 10^{\circ}C$$

$$q_1 + q_2 + q_3 + q_4 = O$$
  
(5O)(333) + (5O)(4.18)(1O) + (4O)(4.18)(1O) + (m)(4.18)(-65) = O  
 $m = 75.1 \text{ g}$ 

ANSWER IS: b

## 17) BOND ENTHALPIES ( kJ/mole)

Using the above table of bond enthalpies, calculate the heat of reaction,  $\Delta H_{rxn}$ , for the gaseous reaction, (20 pts) SHOW WORK

$$H_2O_2$$
 +  $C_4H_6$   $\longrightarrow$   $C_4H_6(OH)_2$   
2-butyne cyclobutadiol

where C<sub>4</sub>H<sub>6</sub> is CH<sub>3</sub>CCCH<sub>3</sub> (one triple bond) and cyclobutadiol (all single bonds) is,



HINT: FIRST WRITE THE LEWIS STRUCTURE FOR EACH MOLECULE.

ANSWER IS: -431 kJ

18) Use the following data,

1. 
$$\operatorname{Fe_2O_{3(S)}} + 3 \operatorname{CO_{(g)}} \longrightarrow 2 \operatorname{Fe_{(S)}} + 3 \operatorname{CO_{2(g)}}$$
  $-3 \operatorname{O.O}$ 

2. 
$$3 \operatorname{Fe_2O_{3(S)}} + \operatorname{CO_{(g)}} \longrightarrow 2 \operatorname{Fe_3O_{4(S)}} + \operatorname{CO_{2(g)}}$$
 -57.0

3. 
$$\operatorname{Fe_3O_{4(S)}} + \operatorname{CO}_{(g)} \longrightarrow \operatorname{3FeO}_{(S)} + \operatorname{CO}_{2(g)} + \operatorname{42.0}$$

to determine the heat of reaction,  $\Delta H^o_{\ rxn}$  , for the reduction of ferrous oxide by carbon monoxide (20 pts) SHOW WORK according to;

$$FeO_{(S)} + CO_{(g)} \longrightarrow Fe_{(S)} + CO_{2(g)}$$

f) 
$$+19.5 \text{ kJ}$$
 g)  $+3.0 \text{ k}$ 

$$\begin{array}{lll} (\frac{1}{3})(-3) & \operatorname{FeO}_{(S)} + \frac{1}{3} \operatorname{CO}_{2(g)} \longrightarrow & \frac{1}{3} \operatorname{Fe_3O_{4(S)}} + \frac{1}{3} \operatorname{CO}_{(g)} & (\frac{1}{3})(-42.0) \\ (\frac{1}{2})(1) & \frac{1}{2} \operatorname{Fe_2O_{3(S)}} + \frac{3}{2} \operatorname{CO}_{(g)} \longrightarrow & \operatorname{Fe}_{(S)} + \frac{3}{2} \operatorname{CO}_{2(g)} & (\frac{1}{2})(-30.0) \\ (\frac{1}{6})(-2) & \frac{1}{3} \operatorname{Fe_3O_{4(S)}} + \frac{1}{6} \operatorname{CO}_{2(g)} \longrightarrow & \frac{1}{2} \operatorname{Fe_2O_{3(S)}} + \frac{1}{6} \operatorname{CO}_{(g)} & (\frac{1}{6})(+57.0) \end{array}$$

$$FeO_{(S)} + CO_{(g)} \longrightarrow Fe_{(S)} + CO_{2(g)}$$
  $\Delta H^{o}_{rxn} = -19.5 \text{ kJ}$ 

ANSWER IS: e