REMOVE THIS PAGE PRIOR TO STARTING EXAM.

USE THE FOLLOWING INFORMATION TO ANSWER QUESTIONS 1 AND 2

There are two different compounds containing lead and oxygen; Litharge (PbO) and Orthoplumbate $\left(\mathrm{Pb}_{3} \mathrm{O}_{4}\right)$. The crystal structure of Litharge is shown below.

$$
\begin{aligned}
\mathrm{a}=\mathrm{b}=4.000 \AA & ? \AA \mathrm{~A} \\
\text { Molar mass } & =223.2 \mathrm{~g} / \mathrm{mı} \\
\text { density }=9.000 & \frac{3}{\mathrm{~g}} / \mathrm{CI}
\end{aligned}
$$

In this crystal, the atoms on a dashed line are linearly arranged.
For Orthoplumbate $\left(\mathrm{Pb}_{3} \mathrm{O}_{4}\right)$:
$\mathrm{a}=\mathrm{b}=8.8 \mathrm{O} 6 \AA, \quad \mathrm{c}=6.564 \AA, \quad \mathrm{~F}=685.598 \frac{\mathrm{~g}}{\mathrm{~mol}}, \quad$ density $=? \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}$

1) In Orthoplumbate there are 4 molecules per unit cell (empirical formula units). What is the density of Orthoplumbate. SHOW WORK (20 pts)

$$
\begin{gathered}
\frac{\mathrm{g}}{\mathrm{~cm}^{3}}=\left(\frac{\mathrm{g}}{\mathrm{~mol}}\right)\left(\frac{\mathrm{mol}}{\text { molecule }}\right)\left(\frac{\text { molecules }}{\mathrm{uc}}\right)\left(\frac{\mathrm{uc}}{\mathrm{~cm}^{3}}\right) \\
\mathrm{d}=(685.598)\left(\frac{1}{6.022 \times 10^{23}}\right)(4)\left(\frac{1}{(8.806)^{2}(6.564) \times 10^{-24}}\right) \\
\mathrm{d}=8.95 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}
\end{gathered}
$$

ANSWER IS: \qquad
2) Calculate the unit edge length, C , of Litharge (PbO). SHOW WORK (20 pts)

$$
\begin{gathered}
\frac{\mathrm{cm}^{3}}{\mathrm{uc}}=\left(\frac{\mathrm{cm}^{3}}{\mathrm{~g}}\right)\left(\frac{\mathrm{g}}{\mathrm{~mol}}\right)\left(\frac{\mathrm{mol}}{\text { molecule }}\right)\left(\frac{\text { molecule }}{\mathrm{uc}}\right) \text { WHERE } \frac{\text { molecule }}{\mathrm{uc}}=2 \\
\frac{\mathrm{~cm}^{3}}{\mathrm{uc}}=\mathrm{axb} \times \mathrm{c} \times 10^{-24}=(4.000)^{2}(\mathrm{c}) \times 10^{-24}=\left(\frac{1}{9.000}\right)(223.2)\left(\frac{1}{6.022 \times 10^{23}}\right)(2) \\
\mathrm{c}=5.148 \AA
\end{gathered}
$$

ANSWER IS: \qquad
3) An unknown element has a cubic structure with 58 atoms per unit cell. The density of this element is $7.470 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}$ and its edge length is $8.914 \AA$. Calculate
the atomic weight of this element. SHOW WORK (20 pts)

$$
\begin{gathered}
\frac{\mathrm{g}}{\mathrm{~mol}}=\left(\frac{\mathrm{g}}{\mathrm{~cm}^{3}}\right)\left(\frac{\text { atoms }}{\mathrm{mol}}\right)\left(\frac{\mathrm{cm}^{3}}{\mathrm{uc}}\right)\left(\frac{\mathrm{uc}}{\mathrm{atom}}\right) \\
\frac{\mathrm{g}}{\mathrm{~mol}}=(7.470)\left(6.022 \times 10^{23}\right)\left(8.914 \times 10^{-8}\right)^{3}\left(\frac{1}{58}\right) \\
\frac{\mathrm{g}}{\mathrm{~mol}}=54.93
\end{gathered}
$$

ANSWER IS: \qquad
4) A reaction is found to be inverse first order in the reactant, A. The rate expression is

$$
\text { rate }=-\frac{\Delta[\mathrm{A}]}{\Delta \mathrm{t}}=\mathrm{k}[\mathrm{~A}]^{-1}=\frac{\mathrm{k}}{[\mathrm{~A}]}
$$

The integrated rate expression is

$$
\frac{1}{2}\left([\mathrm{~A}]_{\mathrm{o}}^{2}-[\mathrm{A}]^{2}\right)=\mathrm{kt}
$$

Starting with $[\mathrm{A}]_{\mathrm{O}}=0.100 \mathrm{M}$ it takes 10.0 min for 60.0% of A to be lost. The numerical value of k (with units) is; (20 pts) SHOW WORK
a) $3.20 \times 10^{-4} \frac{\mathrm{~L}^{2}}{\mathrm{~mol}^{2} \cdot \mathrm{~min}}$
b) $7.00 \times 10^{-6} \frac{\mathrm{~mol}^{2}}{\mathrm{~L}^{2} \cdot \mathrm{sec}}$
c) $3.20 \times 10^{-4} \frac{\mathrm{~mol}^{2}}{\mathrm{~L}^{2} \cdot \mathrm{~min}}$
d) $2.52 \times 10^{-4} \frac{\mathrm{~mol}^{2}}{\mathrm{~L}^{2} \cdot \mathrm{~min}}$
e) $5.33 \times 10^{-6} \frac{\mathrm{~mol}^{2}}{\mathrm{~L}^{2} \cdot \mathrm{sec}}$

$$
\begin{aligned}
\frac{1}{2}\left((0.10)^{2}-(0.04)^{2}\right) & =\mathrm{k}(10.0) \\
\mathrm{k}=4.20 \times 10^{-4} \frac{\mathrm{~mol}^{2}}{\mathrm{~L}^{2} \cdot \mathrm{~min}} & =7.00 \times 10^{-6} \frac{\mathrm{~mol}^{2}}{\mathrm{~L}^{2} \cdot \mathrm{sec}}
\end{aligned}
$$

\qquad

THE FOLLOWING INFORMATION IS FOR USE IN PROBLEMS 5, 6, AND 7
Values of Δ_{o} (in $\mathrm{eV} / \mathrm{ion}$) for some transition metal complexes are:
$\Delta_{\mathrm{O}}(\mathrm{eV} /$ ion $)$

$$
\begin{array}{ll}
\mathrm{Co}^{3+} & 3.501 \\
\mathrm{Co}^{2+} & 2.242
\end{array}
$$

In octahedral symmetry the d orbitals are split as shown:

The $\mathrm{t}_{2 \mathrm{~g}}$ orbitals are lowered by $\frac{2}{5} \Delta_{\mathrm{o}}$, and the e_{g} orbitals are raised by $\frac{3}{5} \Delta_{\mathrm{o}}$. You are given the complex ions: $\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}{ }^{3-}$ and $\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}{ }^{4-}$. Assume all complexes can be either in the high spin (H.S.) state or the low spin (L.S.) state .
5) The sequence of these complex ions in order of increasing paramagnetism is, (10 pts)
a) $\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}{ }^{3-}($ L.S. $)<\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}{ }^{3-}($ H.S. $)<\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}{ }^{4-}($ H.S. $)<\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}{ }^{4-}$ (L.S. $)$
b) $\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}{ }^{4-}($ L.S. $)<\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}{ }^{4-}($ H.S. $)<\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}{ }^{3-}{ }^{(\text {H.S. })}<\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}{ }^{3-}($ L.S. $)$
c) $\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}{ }^{3-}($ L.S. $)<\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}{ }^{4-}($ H.S. $)<\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}{ }^{3-}($ H.S. $)<\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}{ }^{4-}($ L.S. $)$
d) $\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}{ }^{3-}($ L.S. $)<\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}{ }^{3-}($ H.S. $)<\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}{ }^{4-}($ H.S. $)<\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}{ }^{4-}{ }^{4}$ (L.S. $)$
e) $\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}{ }^{3-}($ L.S. $)<\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}{ }^{4-}($ L.S. $)<\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}{ }^{4-}($ H.S. $)<\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}{ }^{3-}{ }^{3}$ (H.S. $)$
f) $\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}{ }^{4-}($ L.S. $)<\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}{ }^{3-}($ H.S. $)<\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}{ }^{4-}($ H.S. $)<\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}{ }^{3-}{ }^{3}($ L.S. $)$
g) $\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}{ }^{3-}(\mathrm{L} . \mathrm{S})<.\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}{ }^{4-}($ L.S. $)<\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}{ }^{3-}($ H.S. $\left.)<\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}{ }^{4-}{ }^{\text {(H.S. }}\right)$

ANSWER IS: \underline{e}
6) Calculate the wavelength, λ (in nm), at which the complex $\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}{ }^{3-}$ absorbs light. SHOW WORK (20 pts)

$$
\begin{array}{cl}
\varepsilon=\frac{\mathrm{hc}}{\lambda}=\Delta_{\mathrm{o}}=3.501 \mathrm{eV} & \therefore \lambda=\frac{\mathrm{hc}}{\Delta_{\mathrm{o}}} \\
\lambda=\frac{\mathrm{hc}}{\Delta_{\mathrm{o}}}=\frac{\left(6.626 \times 10^{-34}\right)\left(3.00 \times 10^{8}\right)}{(3.501 \mathrm{eV})\left(1.6022 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right)} & =3.54 \times 10^{-7} \mathrm{~m} \\
\lambda=354 \mathrm{~nm}
\end{array}
$$

7) Calculate the crystal field stabilization energy, CFSE in $\mathrm{kJ} / \mathrm{mole}$, for the high spin $\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}{ }^{4-}$ complex ion. $(20 \mathrm{pts}) \quad$ SHOW WORK

$$
\begin{gathered}
\mathrm{CFSE}=5\left(\frac{2}{5} \Delta_{\mathrm{o}}\right)-2\left(\frac{3}{5} \Delta\right)=\frac{4}{5} \Delta_{\mathrm{o}}=\frac{4}{5}(2.242 \mathrm{eV}) \\
\mathrm{CFSE}=1.794 \mathrm{eV}=\left(1.794 \frac{\mathrm{eV}}{\mathrm{ion}}\right)\left(1.6022 \times 10^{-19} \frac{\mathrm{~J}}{\mathrm{eV}}\right)\left(6.022 \times 10^{23} \frac{\mathrm{ion}}{\mathrm{~mol}}\right)\left(10^{-3} \frac{\mathrm{~kJ}}{\mathrm{~J}}\right) \\
\mathrm{CFSE}=\left(1.794 \frac{\mathrm{eV}}{\mathrm{ion}}\right)\left(1.6022 \times 10^{-19} \frac{\mathrm{~J}}{\mathrm{eV}}\right)\left(6.022 \times 10^{23} \frac{\mathrm{ion}}{\mathrm{~mol}}\right)\left(10^{-3} \frac{\mathrm{~kJ}}{\mathrm{~J}}\right)=173.1 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
\end{gathered}
$$

ANSWER IS: \qquad
8) Given the following balanced reaction at $25^{\circ} \mathrm{C}$;

$$
4 \mathrm{Ag}^{2+}+\mathrm{N}_{2} \mathrm{H}_{4}+4 \mathrm{H}_{2} \mathrm{O} \longrightarrow 4 \mathrm{Ag}^{+}+\mathrm{N}_{2}+4 \mathrm{H}_{3} \mathrm{O}^{+}
$$

The observed rate expression was found to be,

$$
\frac{\Delta\left[\mathrm{Ag}^{+}\right]}{\Delta \mathrm{t}}=\mathrm{k} \frac{\left[\mathrm{Ag}^{2+}\right]^{2}\left[\mathrm{~N}_{2} \mathrm{H}_{4}\right]}{\left[\mathrm{Ag}^{+}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}
$$

a) Complete the following table using the data given. Initial rate units are $\frac{\mathrm{mol}}{\mathrm{L} \cdot \mathrm{sec}}$. $(8 \mathrm{pts})$
$\underline{\text { Experiment }} \underline{\text { Initial rate }}\left(\frac{\Delta\left[\mathrm{Ag}^{+}\right]}{\Delta \mathrm{t}}\right) \quad\left[\mathrm{Ag}^{2+}\right] \quad\left[\mathrm{Ag}^{+}\right] \quad\left[\mathrm{N}_{2} \mathrm{H}_{4}\right] \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$

1. 2.4×10^{-4}
$\begin{array}{llll}0.040 & 0.160 & 1.000 & 0.100\end{array}$
2. $9.6 \times 10^{-4} \quad 0.080 \quad 0.160 \quad 1.00 \quad 0.100$
3. $1.92 \times 10^{-4} \quad 0.080 \quad 0.800 \quad 1.00 \quad 0.100$
$\begin{array}{llllll}\text { 4. } & \underline{9.6 \times 10^{-4}} & 0.160 & 0.160 & 0.50 & 0.200 \\ \text { 5. } & \underline{6.0 \times 10^{-7}} & 0.020 & 1.60 & 1.00 & 1.00\end{array}$
b) Calculate the numerical value of k , and, give its units. (4 pts)

$$
\mathrm{k}=2.4 \times 10^{-3} \mathrm{sec}^{-1}
$$

c) Starting with the concentrations given in experiment 1 (part a) what would be the following concentrations at the end of the first half life? (8 pts)

$$
\left[\mathrm{Ag}^{2+}\right]=0.020 \quad\left[\mathrm{Ag}^{+}\right]=0.180 \quad\left[\mathrm{~N}_{2} \mathrm{H}_{4}\right]=0.995 \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.020
$$

9) An ionic crystalline solid, MX_{3}, has a cubic unit cell. Which of the following arrangements is consistent with the stoichiometry of this compound? (10 pts)
a) M^{3+} ions at the corners, X^{-}ions at the face centers.
b) M^{3+} ions at the corners, X^{-}ions at the body centers.
c) X^{-}ions at the corners, M^{3+} ions at the face centers.
d) X^{-}ions at the corners, M^{3+} ions at the body centers.
e) M^{3+} ions at the corners and the body centers, X^{-}ions at the face centers.

ANSWER IS: $\underline{\mathrm{a}}$
10) The unit cell length of a NaF crystal is $4.634 \AA$. If the ionic radius of Na^{+} is $0.95 \AA$ what is the ionic radius of F^{-}, assuming anion-cation contact. The Na^{+}ions occupy the corners and the face centers, while the F^{-}ions occupy the edges. (10 pts)
a) $1.37 \AA$
b) $3.06 \AA$
c) $2.03 \AA$
d) $2.97 \AA$
e) $3.33 \AA$
f) $2.33 \AA$

ANSWER IS: \underline{a}
11) Given the following complex ions and their hybridizations:
a) $\left[\mathrm{Ni}(\mathrm{Cl})_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]\left(\mathrm{dsp}^{2}\right)$
b) $\left[\mathrm{Ni}(\mathrm{Cl})_{3}\left(\mathrm{NH}_{3}\right)\right]^{-}\left(\mathrm{dsp}^{2}\right)$
c) $\left[\mathrm{Ni}(\mathrm{Cl})_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]\left(\mathrm{sp}^{3}\right)$
d) $\left[\mathrm{Ni}(\mathrm{en})\left(\mathrm{NH}_{3}\right)_{2}\right]\left(\mathrm{dsp}^{2}\right)$
e) $\left[\mathrm{Ni}(\mathrm{en})_{2}\right]\left(\mathrm{dsp}^{2}\right)$
f) $\left[\mathrm{Ni}(\mathrm{en})_{2}\right]\left(\mathrm{sp}^{3}\right)$
g) $\left[\mathrm{Cr}(\mathrm{en})_{3}\right]^{3+}\left(\mathrm{d}^{2} \mathrm{sp}^{3}\right)$
h) $\left[\mathrm{Cr}(\mathrm{en})_{2}(\mathrm{Cl})_{2}\right]^{+}\left(\mathrm{d}^{2} \mathrm{sp}^{3}\right)$

Which of these complex ions can have more than one (1) isomeric form? (10 pts)

ANSWER(S) is/are: $\underline{\mathrm{a}}, \underline{\mathrm{g}}, \underline{\mathrm{h}}$
12) Give the number of symmetry elements of the type requested for the following rectangular structure containing atoms A and B. (10 pts)

NUMBER PRESENT

$$
\begin{array}{cc}
\text { center of symmetry } & \underline{1} \\
\text { two fold axis of rotatien, C } & \underline{1} \\
\text { four fold axis of rotatcipn, } & \underline{0} \\
\text { planes of symmetry } & \underline{1}
\end{array}
$$

13) Given the following divalent ions, $\mathrm{Cr}^{2+}, \mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}$, and Co^{2+} with octahedral symmetry. Assuming they are all in the high spin state, show how the ionic radius varies between adjacent ions in the periodic table by inserting $<$ or $>$ between these ions. (10 pts)

Atomic numbers: Cr (24), Mn (25), Fe (26), Co (27).

$$
\text { ANSWER: } \mathrm{Cr}^{2+}<\mathrm{Mn}^{2+}>\mathrm{Fe}^{2+}>\mathrm{Co}^{2+}
$$

14) The compound A reacts as shown (first order) to give products B and C ;

What is the $\frac{[\mathrm{B}]}{[\mathrm{C}]}$ ratio after the first half life? (5 pts) ANSWER: $\frac{10}{1}$
What is the $[B]$ after the first half life? (5 pts) $[B]=\underline{0.050} \mathrm{M}$
15) A 0.020 m solution of each of the following compounds is prepared. Which solution would you expect to freeze at $-0.149^{\circ} \mathrm{C}$? (10 pts)
a) $\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
b) $\mathrm{Na}[\mathrm{Co}(\mathrm{EDTA})]$
d) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$
e) $\left[\mathrm{Co}(\mathrm{py})_{3} \mathrm{Cl}_{3}\right]$
where py = pyridine (unidentate), en = ethylenediamine (bidentate), and EDTA = ethylenediaminetetraacetic acid (hexadentate)

$$
\begin{aligned}
& \Delta \mathrm{T}=\mathrm{i} \mathrm{~K}_{\mathrm{f}} \mathrm{~m} \quad \text { where } \mathrm{K}_{\mathrm{f}}=1.86 \mathrm{deg} \cdot \mathrm{~m}^{-1} \\
& 0.149=\mathrm{i}(1.86)(0.020) \quad \therefore \quad \mathrm{i}=4
\end{aligned}
$$

ANSWER IS: \underline{d}
16) Which of the following species will not form a coordination complex (complex ion) with Fe^{2+} ?
(10 pts)
a) CN^{-}
b) $\mathrm{NH}_{2}{ }^{-}$
c) CO
d) $\mathrm{CH}_{3}{ }^{+}$
e) $\mathrm{CH}_{3}{ }^{-}$
f) BF_{3}

ANSWER IS/ARE: \underline{d} and \underline{f}
17) If excess AgNO_{3} solution is added to 100.0 mL of a 0.0240 M solution of dichlorobis(ethylenediamine)cobalt(III) chloride, how many moles of AgCl should be precipitated? (10 pts)
a) 0.00120
b) 0.00160
c) 0.00240
d) 0.00480
e) 0.00720

ANSWER IS: \underline{c}
18) This part is not related to the previous parts. If the heat of hydration of Fe^{2+} to form $\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}$ is $-1841 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$ when the Fe^{2+} is in the low spin state, then the heat of hydration for Fe^{2+} in the high spin state would be approximately;
a) $-1841 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$
b) $-2000 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$
c) $-1600 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$

Consider the second order reaction, $\mathrm{A} \quad \mathrm{C}_{\mathrm{C}}>$ products.
The concentration of A as a function of time is shown below.

19) What is the numerical value of the rate constant? (give units) (10 pts)

$$
\begin{gathered}
\frac{1}{[\mathrm{~A}]}-\frac{1}{[\mathrm{~A}]_{0}}=\mathrm{kt} \quad \quad \frac{1}{(0.5)}-\frac{1}{(1)}=\mathrm{k}(10) \\
\therefore \mathrm{k}=0.1 \frac{\mathrm{~L}}{\mathrm{~mol} \cdot \mathrm{~min}}
\end{gathered}
$$

20) What is the second half life (in min)? CREDIT FOR THIS PART IS BASED UPON YOUR ANSWER FROM QUESTION 19.

First half life $=10$ minutes $\quad \therefore$ second half life is 20 minutes

ANSWER IS: 20 min .

