REMOVE THIS PAGE PRIOR TO STARTING EXAM.

ANSWER KEY

CHEMISTRY F14O4 PROFESSOR J. MORROW	THIRD EXAM	4/26/00	
PRINT NAME, LAST:			
FIRST:			
I.D.# :			
MAXIMUM POINT V	ALUE IS IN PARENTHI	ESES	
1(20)	8(20)	15	(10)
2(20)	9(10)	16	(10)
3(20)	10 (10)) 17	(10)
4(20)	11(10) 18	(10)
5(10)	12 (10)	19	(10)
6(20)	13(10)	20	(10)
7(20)	14 (10))	
COLUMN TOTALS:			
(130)	(80)		(60)
EXAM TOTAL (220 pts))		
		OUT	OF 100

USE THE FOLLOWING INFORMATION TO ANSWER QUESTIONS 1 AND 2

There are two different compounds containing lead and oxygen; Litharge (PbO) and Orthoplumbate (Pb_3O_4). The crystal structure of Litharge is shown below.

a = b = 4.000 Å ? Å Molar mass = 223.2 g/m density = 9.000 g/c

In this crystal, the atoms on a dashed line are linearly arranged.

For Orthoplumbate (Pb_3O_4) :

 $a = b = 8.806 \text{ Å}, \quad c = 6.564 \text{ Å}, \quad F = 685.598 \frac{g}{mol}, \quad \text{density} = ? \frac{g}{cm^3}$

1) In Orthoplumbate there are 4 molecules per unit cell (empirical formula units). What is the density of Orthoplumbate. SHOW WORK (20 pts)

$$\frac{g}{cm^3} = (\frac{g}{mol})(\frac{mol}{molecule})(\frac{molecules}{uc})(\frac{uc}{cm^3})$$

$$d = (685.598)(\frac{1}{6.022x10^{23}})(4)(\frac{1}{(8.806)^2(6.564)x10^{-24}})$$

$$d = 8.95 \frac{g}{cm^3}$$

ANSWER IS:

2) Calculate the unit edge length, C, of Litharge (PbO). SHOW WORK (20 pts)

$$\frac{\text{cm}^{3}}{\text{uc}} = (\frac{\text{cm}^{3}}{\text{g}})(\frac{\text{g}}{\text{mol}})(\frac{\text{mol}}{\text{molecule}})(\frac{\text{molecule}}{\text{uc}}) \text{ WHERE } \frac{\text{molecule}}{\text{uc}} = 2$$

$$\frac{\text{cm}^{3}}{\text{uc}} = \text{axbxcx10}^{-24} = (4.000)^{2}(\text{c})\text{x10}^{-24} = (\frac{1}{9.000})(223.2)(\frac{1}{6.022\text{x10}^{23}})(2)$$

$$\mathbf{c} = 5.148 \text{ Å}$$

ANSWER IS:

4

3) An unknown element has a cubic structure with 58 atoms per unit cell. The density of this element is 7.470 $\frac{g}{cm^3}$ and its edge length is 8.914 Å. Calculate

the atomic weight of this element. SHOW WORK (20 pts)

$$\frac{g}{mol} = (\frac{g}{cm^3})(\frac{atoms}{mol})(\frac{cm^3}{uc})(\frac{uc}{atom})$$
$$\frac{g}{mol} = (7.470)(6.022x10^{23})(8.914x10^{-8})^3(\frac{1}{58})$$
$$\frac{g}{mol} = 54.93$$

ANSWER IS:

4) A reaction is found to be inverse first order in the reactant, A. The rate expression is

rate =
$$-\frac{\Delta[A]}{\Delta t} = k[A]^{-1} = \frac{k}{[A]}$$

The integrated rate expression is

,

$$\frac{1}{2}([A]^{2}_{o} - [A]^{2}) = kt$$

Starting with $[A]_0 = 0.100 \text{ M}$ it takes 10.0 min for 60.0 % of A to be lost. The numerical value of k (with units) is; (20 pts) SHOW WORK

a) $3.20 \times 10^{-4} \frac{L^2}{\text{mol}^2 \cdot \text{min}}$ b) $7.00 \times 10^{-6} \frac{\text{mol}^2}{L^2 \cdot \text{sec}}$ c) $3.20 \times 10^{-4} \frac{\text{mol}^2}{L^2 \cdot \text{min}}$ d) $2.52 \times 10^{-4} \frac{\text{mol}^2}{L^2 \cdot \text{min}}$ e) $5.33 \times 10^{-6} \frac{\text{mol}^2}{L^2 \cdot \text{sec}}$ $\frac{1}{2} ((0.10)^2 - (0.04)^2) = k(10.0)$

$$k = 4.20 \times 10^{-4} \frac{\text{mol}^2}{\text{L}^2 \cdot \text{min}} = 7.00 \times 10^{-6} \frac{\text{mol}^2}{\text{L}^2 \cdot \text{sec}}$$

ANSWER IS:

THE FOLLOWING INFORMATION IS FOR USE IN PROBLEMS 5, 6, AND 7

Values of Δ_0 (in eV/ion) for some transition metal complexes are:

		Δ_0 (eV/ion)	
Co^{3+}	3.501		in $\text{Co(NO}_2)_6^{3-}$
Co ²⁺	2.242		in $\text{Co(NO}_2)_6^{4-}$

In octahedral symmetry the d orbitals are split as shown:

unsplit d orbitals
$$\Delta_{o}$$
 t_{2g}

The t_{2g} orbitals are lowered by $\frac{2}{5} \Delta_0$, and the e_g orbitals are raised by $\frac{3}{5} \Delta_0$. You are given the complex ions: $Co(NO_2)_6^{3-}$ and $Co(NO_2)_6^{4-}$. Assume all complexes can be either in the high spin (H.S.) state or the low spin (L.S.) state .

5) The sequence of these complex ions in order of increasing paramagnetism is, (10 pts)

a)
$$\operatorname{Co(NO_2)_6^{3-}(L.S.)} \le \operatorname{Co(NO_2)_6^{3-}(H.S.)} \le \operatorname{Co(NO_2)_6^{4-}(H.S.)} \le \operatorname{Co(NO_2)_6^{4-}(L.S.)}$$

b) $\operatorname{Co(NO_2)_6^{4-}(L.S.)} \le \operatorname{Co(NO_2)_6^{4-}(H.S.)} \le \operatorname{Co(NO_2)_6^{3-}(H.S.)} \le \operatorname{Co(NO_2)_6^{3-}(L.S.)}$
c) $\operatorname{Co(NO_2)_6^{3-}(L.S.)} \le \operatorname{Co(NO_2)_6^{4-}(H.S.)} \le \operatorname{Co(NO_2)_6^{4-}(H.S.)} \le \operatorname{Co(NO_2)_6^{4-}(L.S.)}$
d) $\operatorname{Co(NO_2)_6^{3-}(L.S.)} \le \operatorname{Co(NO_2)_6^{3-}(H.S.)} \le \operatorname{Co(NO_2)_6^{4-}(H.S.)} \le \operatorname{Co(NO_2)_6^{4-}(L.S.)}$
e) $\operatorname{Co(NO_2)_6^{3-}(L.S.)} \le \operatorname{Co(NO_2)_6^{4-}(L.S.)} \le \operatorname{Co(NO_2)_6^{4-}(H.S.)} \le \operatorname{Co(NO_2)_6^{3-}(H.S.)}$
f) $\operatorname{Co(NO_2)_6^{4-}(L.S.)} \le \operatorname{Co(NO_2)_6^{3-}(H.S.)} \le \operatorname{Co(NO_2)_6^{4-}(H.S.)} \le \operatorname{Co(NO_2)_6^{3-}(L.S.)}$
g) $\operatorname{Co(NO_2)_6^{3-}(L.S.)} \le \operatorname{Co(NO_2)_6^{4-}(L.S.)} \le \operatorname{Co(NO_2)_6^{3-}(H.S.)} \le \operatorname{Co(NO_2)_6^{4-}(H.S.)} \le \operatorname{Co(NO_2)_6^{4-}(H$

ANSWER IS: <u>e</u>

6) Calculate the wavelength, λ (in nm), at which the complex Co(NO₂)₆³⁻ absorbs light. SHOW WORK (20 pts) $\varepsilon = \frac{hc}{\lambda} = \Delta_0 = 3.501 \text{ eV} \qquad \therefore \ \lambda = \frac{hc}{\Delta_0}$ $\lambda = \frac{hc}{\Delta_0} = \frac{(6.626 \times 10^{-34})(3.00 \times 10^8)}{(3.501 \text{ eV})(1.6022 \times 10^{-19} \text{ J/eV})} = 3.54 \times 10^{-7} \text{ m}$ $\lambda = 354 \text{ nm}$ ANSWER IS: 7) Calculate the crystal field stabilization energy, CFSE in kJ/mole, for the high spin $Co(NO_2)_6^{4-}$ complex ion. (20 pts) SHOW WORK

$$CFSE = 5(\frac{2}{5} \Delta_{0}) - 2(\frac{3}{5} \Delta) = \frac{4}{5}\Delta_{0} = \frac{4}{5}(2.242 \text{ eV})$$

$$CFSE = 1.794 \text{ eV} = (1.794 \frac{\text{eV}}{\text{ion}})(1.6022 \text{x} 10^{-19} \frac{\text{J}}{\text{eV}})(6.022 \text{x} 10^{23} \frac{\text{ion}}{\text{mol}})(10^{-3} \frac{\text{kJ}}{\text{J}})$$

$$CFSE = (1.794 \frac{\text{eV}}{\text{ion}})(1.6022 \text{x} 10^{-19} \frac{\text{J}}{\text{eV}})(6.022 \text{x} 10^{23} \frac{\text{ion}}{\text{mol}})(10^{-3} \frac{\text{kJ}}{\text{J}}) = 173.1 \frac{\text{kJ}}{\text{mol}}$$

ANSWER IS:

8) Given the following balanced reaction at 25°C;

 $4 \operatorname{Ag}^{2^{+}} + \operatorname{N}_{2}\operatorname{H}_{4} + 4 \operatorname{H}_{2}\operatorname{O} \longrightarrow 4 \operatorname{Ag}^{+} + \operatorname{N}_{2} + 4 \operatorname{H}_{3}\operatorname{O}^{+}$ The observed rate expression was found to be, $\frac{\Delta[\operatorname{Ag}^{+}]}{\Delta t} = k \frac{[\operatorname{Ag}^{2^{+}}]^{2}[\operatorname{N}_{2}\operatorname{H}_{4}]}{[\operatorname{Ag}^{+}][\operatorname{H}_{3}\operatorname{O}^{+}]}$

a) Complete the following table using the data given. Initial rate units are $\frac{\text{mol}}{\text{Lsec}}$. (8 pts)

<u>Experim</u>	<u>ent</u> <u>Initial rate</u> $\left(\frac{\Delta[Ag^+]}{\Delta t}\right)$	[Ag ²⁺]	[Ag ⁺]] [N ₂ H	4] [H30	O^+]
1.	2.4 x 10 ⁻⁴	0.040	0.160	1.000	0.100	
2.	<u>9.6 x 10</u> -4	0.080	0.160	1.00	0.100	
3.	<u>1.92 x 10</u> -4		0.080	0.800	1.00	0.100
4.	<u>9.6 x 10</u> -4		0.160	0.160	0.50	0.200
5.	<u>6.0 x 10</u> ⁻⁷		0.020	1.60	1.00	1.00

b) Calculate the numerical value of k, and, give its units. (4 pts)

$$k = 2.4 \times 10^{-3} \text{ sec}^{-1}$$

c) Starting with the concentrations given in experiment 1 (part a) what would be the following concentrations at the <u>end</u> of the first half life? (8 pts)

$$[Ag^{2+}] = 0.020$$
 $[Ag^{+}] = 0.180$ $[N_2H_4] = 0.995$ $[H_3O^{+}] = 1.020$

9) An ionic crystalline solid, MX_3 , has a cubic unit cell. Which of the following arrangements is consistent with the stoichiometry of this compound? (10 pts)

- a) M^{3+} ions at the corners, X⁻ ions at the face centers.
- b) M^{3+} ions at the corners, X⁻ ions at the body centers.
- c) X^{-} ions at the corners, M^{3+} ions at the face centers.
- d) X^{-} ions at the corners, M^{3+} ions at the body centers.
- e) M^{3+} ions at the corners and the body centers, X⁻ ions at the face centers.

ANSWER IS: <u>a</u>

- 10) The unit cell length of a NaF crystal is 4.634 Å. If the ionic radius of Na⁺ is 0.95 Å what is the ionic radius of F⁻, assuming anion-cation contact. The Na⁺ ions occupy the corners and the face centers, while the F⁻ ions occupy the edges. (10 pts)
- a) 1.37 Å b) 3.06 Å c) 2.03 Å d) 2.97 Å e) 3.33 Å f) 2.33 Å ANSWER IS: a

11) Given the following complex ions and their hybridizations:

a)
$$[Ni(Cl)_2(NH_3)_2] (dsp^2)$$
 b) $[Ni(Cl)_3(NH_3)]^- (dsp^2)$
c) $[Ni(Cl)_2(NH_3)_2] (sp^3)$ d) $[Ni(en)(NH_3)_2] (dsp^2)$
e) $[Ni(en)_2] (dsp^2)$ f) $[Ni(en)_2] (sp^3)$
g) $[Cr(en)_3]^{3+} (d^2sp^3)$ h) $[Cr(en)_2(Cl)_2]^+ (d^2sp^3)$

Which of these complex ions can have more than one (1) isomeric form? (10 pts)

ANSWER(S) is/are: $\underline{a}, \underline{g}, \underline{h}$

12) Give the number of symmetry elements of the type requested for the following rectangular structure containing atoms A and B. (10 pts)

NUMBER PRESENT

AB	center of symmetry	<u>1</u>
	two fold axis of rotatign, C	<u>1</u>
	four fold axis of rotation,	<u>0</u>
B A	planes of symmetry	<u>1</u>

13) Given the following divalent ions, Cr^{2+} , Mn^{2+} , Fe^{2+} , and Co^{2+} with octahedral symmetry. Assuming they are all in the high spin state, show how the ionic radius varies between adjacent ions in the periodic table by inserting < or > between these ions. (10 pts)

Atomic numbers: Cr (24), Mn (25), Fe (26), Co (27).

ANSWER:
$$Cr^{2+} < Mn^{2+} > Fe^{2+} > Co^{2+}$$
.

14) The compound A reacts as shown (first order) to give products B and C;

$$\begin{array}{c} k_{1} & B \\ A & k_{1} & = 10^{-2} \text{ sec}^{1} \\ k_{2} & C \\ \end{array} \text{ and } [A]_{0} = 0.110 \text{ M}$$

$$\begin{array}{c} k_{2} & = 10^{-3} \text{ sec}^{1} \\ \end{array} \text{ What is the } \frac{[B]}{[C]} \text{ ratio after the first half life? (5 pts) } \text{ ANSWER: } \frac{10}{1} \\ \end{array}$$

$$\begin{array}{c} \text{What is the } [B] \text{ after the first half life? (5 pts) } [B] = \underline{0.050} \text{ M} \\ \end{array}$$

15) A 0.020 m solution of each of the following compounds is prepared. Which solution would you expect to freeze at -0.149°C? (10 pts)

a)
$$[Co(en)_2Cl_2]Cl$$
 b) $Na[Co(EDTA)]$ c) $[Cr(py)_5Cl]Cl_2$
d) $[Cr(NH_3)_6]Cl_3$ e) $[Co(py)_3Cl_3]$

where py = pyridine (unidentate), en = ethylenediamine (bidentate), and EDTA = ethylenediaminetetraacetic acid (hexadentate)

$$\Delta T = iK_f m$$
 where $K_f = 1.86 \text{ deg} \cdot \text{m}^{-1}$
0.149 = i(1.86)(0.020) \therefore i = 4

ANSWER IS: d

16) Which of the following species will not form a coordination complex (complex ion) with Fe^{2+} ? (10 pts) a) CN^- b) NH_2^- c) CO d) CH_3^+ e) CH_3^- f) BF_3

ANSWER IS/ARE: d and f

17) If excess AgNO₃ solution is added to 100.0 mL of a 0.0240 M solution of dichlorobis(ethylenediamine)cobalt(III) chloride, how many moles of AgCl should be precipitated? (10 pts) a) 0.00120 b) 0.00160 c) 0.00240 d)0.00480 e) 0.00720

ANSWER IS: C

18) This part is not related to the previous parts. If the heat of hydration of Fe^{2+} to form $Fe(H_2O)_6^{2+}$ is -1841 $\frac{kJ}{mol}$ when the Fe^{2+} is in the low spin state, then the heat of hydration for Fe²⁺ in the high spin state would be approximately; a) -1841 $\frac{kJ}{mol}$ b) -2000 $\frac{kJ}{mol}$ c) -1600 $\frac{kJ}{mol}$ (10 pts)

ANSWER IS: C

THE FOLLOWING INFORMATION IS FOR QUESTIONS 19 AND 20

Consider the second order reaction, $A \longrightarrow$ products. The concentration of A as a function of time is shown below.

19) What is the numerical value of the rate constant? (give units) (10 pts)

$$\frac{1}{[A]} - \frac{1}{[A]_0} = kt$$

$$\frac{1}{(0.5)} - \frac{1}{(1)} = k(10)$$

$$\therefore k = 0.1 \frac{L}{\text{mol·min}}$$
ANSWER IS: 0.1 $\frac{L}{\text{mol·min}}$

20) What is the <u>second</u> half life (in min)? CREDIT FOR THIS PART IS BASED UPON YOUR ANSWER FROM QUESTION 19.

First half life = 10 minutes \therefore second half life is 20 minutes

ANSWER IS: 20 min.