CHEMISTRY S140 PROFESSOR J. MO		AM 6/4/99
PRINT NAME, LAST: _		
FIRST:		
I.D.#:	<u>-</u>	
MAXIMU	M POINT VALUE IS IN PARE	NTHESES
1(6)	8(6)	15(4)
2(15)	9(12)	16(4)
3(10)	10(5)	17(4)
4(12)	11(5)	18(8)
5(8)	12(10)	19(10)
6(8)	13(8)	
7(8)	14(4)	
COLUMN TOTALS	S (MAXIMUM):	
(67)	(5O)	(3O)
EXAM TOTAL (147		 IT OF 100

NO PARTIAL CREDIT on any question except where indicated by the statement SHOW WORK. CHECK FRONT BLACKBOARD FOR CORRECTIONS/CHANGES.
SUGGESTION: DO THE SIMPLER PROBLEMS FIRST.
IF ANY PART OF EXAM IS NOT CLEAR - ASK PROCTORS ABOUT IT!

SCRAP WORK SHEETS ARE AT THE END OF EXAM. FEEL FREE TO TEAR THESE PAGES OFF.

USE THE FOLLOWING INFORMATION FOR PROBLEMS 1	AND 2	2
Given the following 3 reactions:		

and

3.
$$2 \text{ NaOH}$$
 ----> Na_2O + H_2O

You are given a mixture of iron(II)carbonate (FeCO $_3$), iron(II)bicarbonate (Fe(HCO $_3$) $_2$) and sodium hydroxide (NaOH). When heated this mixture completely reacts as shown above, forming 17.6O g of CO $_{2(g)}$, 3.6O g of H $_2$ O, and O.1OO mol Na $_2$ O.

$$\begin{aligned} \text{Molar masses:} \quad & \text{FeCO}_3 \; (115.9) \; , \quad & \text{Fe(HCO}_3)_2 \; (177.9) \; , \; \text{NaOH} \; \; (40.0) \; , \\ & \text{CO}_2 \; (44.0) \; , \quad & \text{FeO} \; \; (71.9) \; , \; \text{H}_2 \text{O} \; (18.0) \; , \; \text{Na}_2 \text{O} \; (62.0) \end{aligned}$$

1) Calculate the number of moles of H₂O and of CO₂ formed. (6 pts)

ANSWER IS (H_2O) : _____
ANSWER IS (CO_2) : _____

2) Calculate the number of moles of FeCO₃, Fe(HCO₃)₂, and NaOH present initially. SHOW WORK (15 pts - 5 pts each part)

 \underline{n}_{NaOH} IS: ______ $\underline{n}_{Fe(HCO3)2}$ IS: _____ \underline{n}_{FeCO3} IS: _____

3) Given the following 2 reactions:

and	1. FeCO ₃ >	FeO + CO ₂				
	2. $Fe_2(CO_3)_3$ >	$Fe_2O_3 + 3CO_2$				
	Starting with 1 mole <u>total</u> of $FeCO_3$ and $Fe_2(CO_3)_3$, 1.5 mol of CO_2 are obtained. Calculate the starting number of moles of $FeCO_3$.					
S	SHOW WORK (1	O pts)				
		AN	ISWER IS:			
4) The following at 300 K.	ing gaseous reaction occurs in	a vessel of 50.0 L vo	olume			
	$N_2H_4 + 5F_2 \longrightarrow 2NF$	3 + 4 HF				
Initially, three moles of N_2H_4 and two moles of F_2 are mixed in this vessel. The reaction then occurs until the reactant in limiting quantity is totally consumed. (12 pts - 4 pts each part) Molar masses: N_2H_4 (32.0), F_2 (38.0), F_3 (71.0)						
a) Which	reactant is limiting?	ANSWER IS:				
b) How many moles of the reactant in excess remain, when the reaction is complete?						
		AN	NSWER IS:			
c) How ma	any grams of NF ₃ are produce		NSWER IS:			
5) What volum	ne of CO ₂ can be produced fr	om the reaction of 13.	1 g of			
N_2O (as shown below)? Assume an excess of C_3H_8 , and take the						
density of CO_2 to be 1.96 $\frac{g}{L}$. Molar masses: $N_2O = CO_2 = 44.O$ (8 pts)						
$10 N_2 O_{(g)} + C_3 H_{8(g)} \longrightarrow 10 N_{2(g)} + 3 CO_{2(g)} + 4 H_2 O_{(g)}$						
i) 2.00 L	ii) 2.24 L	iii) 3.50 L	iv) 6.00 L			

ANSWER IS: _____

6) Given the reaction:

		2 C I	$H_{1O(g)} + 13 O_{2(g)}$		-> 8 CO -	- 10 H O	
		many liter	s of CO_2 were recent) if the percent y	overed by	y burning 20	L of C_4H_{1O} ?	
	i) 55 L	ii) 60 L		iii) 70 L	iv)	80 L
						ANSWER IS:	
	and a	temperatur D.O821 Lat mol·o	s has a density of 6 e of 57°C. What is marked (8 pts) leg ii) 114 g/mol	s the mol	ar mass of th	is gas?	nol
						ANSWER IS:	
8)	temp	erature and	the density of the pressure returned BASED UPON YOUR	to STP?	(6 pts)		
						ANSWER IS:	
9)	van	adate. For t	is zirconium(II)ch he following: whe a name, give it's fo	re there i	s a formula, g	give it's name;	
	ii)	SF_6					
		v	II) 1 ·				
	iii)		II)vanadate :				
	iv)	CrBr ₃ :					

vi) aluminum chromate BALANCE THE FOLLOWING EQUATIONS BY INSERTING <u>INTEGERS</u> IN THE SPACES PRECEDING THE FORMULAS. (5 pts each)

ferric phosphate:

v)

10)
$$C_3H_8O + KClO_4 \longrightarrow CO_2 + H_2O + KCl$$

__C_3H_8O + __KClO_4 \longrightarrow __CO_2 + __H_2O + __KCl

11)
$$Ca(N_3)_2 + I_2 \longrightarrow CaI_2 + NI_3$$

$$Ca(N_3)_2 + I_2 \longrightarrow CaI_2 + NI_3$$

12) A compound Q is composed of the elements D, L, and M. For every 2 atoms of D, there are 3 atoms of L and 2 atoms of M. Starting with O.24O x 10²³ atoms of D, and O.07OO moles of L, exactly 1.2O g of M react. First write the formula of the compound. HINT: This is a limiting quantity problem. (10 pts)

The molar mass (atomic weight) of element M is,

i)
$$3O \frac{g}{mol}$$

ii)
$$45 \frac{g}{\text{mol}}$$

iii) 6O
$$\frac{g}{\text{mol}}$$

ii)
$$45 \frac{g}{mol}$$
 iii) $60 \frac{g}{mol}$ iv) $90 \frac{g}{mol}$

ANSWER IS:

13) Give the formal charge of each indicated atom in the thiosulfate $(S_2O_3^{2-})$ anion. (8 pts)

14) Indicate which reactant species is the Lewis acid and which is the Lewis base in the following reaction. HINT: Think Lewis structure. (4 pts)

	A	$ICl_3 + O(CH)$	$(I_3)_2$	-> Cl ₃ Al	-O(CH ₃)	2		
15) Giv	e the co	njugate acid	of $(CH_3)_2N$	IH.	(4 pts)			
						AN	ISWER IS:	
16) Giv	e the hy	drated form o	of the anhyo	drous acid	I ₂ O ₅ . (4 pts)		
						AN	ISWER IS:	
17) Giv	e the for	mula for the	anhydrous	form of H	H ₂ SeO ₄ .	(4 pts)	
						AN	ISWER IS:	
cont beak	tains O.1 kers are t d beaker	ontains O.10 OO L of an othoroughly mandate. The molarit	O.4O M HO aixed toget	Cl solutior her in a su	n. The conficiently	ntents of large		
i) O	.O5 M.	ii) O.10 M.	iii) O.2O	M. iv) O	.40 M.	v) no sa	It is formed.	
						AN	ISWER IS:	
hydi pure and	cocarbon c O _{2(g)} . pressure 8 liters.	ombustion (b., C_xH_y , to C_x All volumes The TOTAL The unbalance $_xH_y + O_2$	O _{2(g)} and were meason volume of the description	$H_2O_{(g)}$ reured at the f the production is,	quired 14 same ter	4 liters on the second	e	
The	most li	kely molecul	ar formula	of the hyd	lrocarbor	n is; (10	O pts)	
i)	С ₆ Н ₁₂	ii) C ₅ H	iii)	C ₄ H _{1O}	iv) C ₅	₅ H ₈		
		SCR A	P WORK	C PAGE		A	NSWER IS:	

SCRAP WORK PAGE

SCRAP WORK PAGE