ANSWER KEY

CHEMISTRY S14O3 FIRST EXAM PROFESSOR J. MORROW				1 6/4/99	6/4/99	
PRINT N	NAME, LAS	T:				
	FIRST:					
	I.D.# : _					
	MAXIMU	M POIN	Γ VALUE IS IN	PARENTHESES		
1	(6)	8	(6)	15	_ (4)	
2	(15)	9	(12)	16	_ (4)	
3	(10)	10.	(5)	17	(4)	
4	(12)	11		18	_ (8)	
5	(8)	12		19 (10)		
6	(8)	13				
7	(8)	14				
COL	LUMN TOTA	LS (MA	XIMUM):			
	(67)	_	(50)		(3O)	
EXAM TOTAL (147 pts) OUT OF 100						
O PARTIAL CREDIT on any question except where indicated						

<u>NO PARTIAL CREDIT</u> on any question except where indicated by the statement <u>SHOW WORK.</u> CHECK FRONT BLACKBOARD FOR CORRECTIONS/CHANGES. SUGGESTION: DO THE SIMPLER PROBLEMS FIRST. IF ANY PART OF EXAM IS NOT CLEAR - ASK PROCTORS ABOUT IT!

SCRAP WORK SHEETS ARE AT THE END OF EXAM. FEEL FREE TO TEAR THESE PAGES OFF.

USE THE FOLLOWING INFORMATION FOR PROBLEMS 1 AND 2

Given the following 3 reactions:

1. FeCO₃ -----> FeO + CO₂ 2. Fe(HCO₃)₂ -----> FeO + $2 CO_2 + H_2O$ and 3. 2 NaOH -----> $Na_2O + H_2O$ You are given a mixture of iron(II)carbonate (FeCO₃), iron(II)bicarbonate (Fe(HCO₃)₂) and

sodium hydroxide (NaOH). When heated this mixture completely reacts as shown above, forming 17.6O g of $CO_{2(g)}$, 3.6O g of H_2O , and O.1OO mol Na₂O. Molar masses: FeCO₃ (115.9), Fe(HCO₃)₂ (177.9), NaOH (4O.O), $CO_2(44.O)$, FeO (71.9), H₂O (18.O), Na₂O (62.O)

1) Calculate the number of moles of H_2O and of CO_2 formed. (6 pts)

$$n_{H2O} = \frac{3.60}{18.0} = 0.200$$
 ANSWER IS (H₂O): 0.200
 $n_{CO2} = \frac{17.6}{44.0} = 0.400$ ANSWER IS (CO₂): 0.400

Calculate the number of moles of FeCO₃, Fe(HCO₃)₂, and NaOH present initially. SHOW WORK (15 pts - 5 pts each part)

FROM RXN 3: $n_{Na2O} = 0.10 \ \text{N} \ n_{H2O} = 0.10 \text{ AND } \underline{n}_{NaOH} = 0.20$

FROM RXN 2: $n_{H2O(rxn 2)} = 0.200 \text{ (total)} - 0.100(rxn 3) = 0.10$ $n_{CO2} = 0.20 \text{ AND } \underline{n}_{Fe(HCO3)2} = 0.10$

FROM RXN 1:
$$n_{CO2} = 0.40$$
 (TOTAL) - 0.20 (rxn 2) = $0.2O = \underline{n_{FeCO3}}$
 $\underline{n_{NaOH}} = 0.2O$, $\underline{n_{Fe(HCO3)2}} = 0.1O$, $\underline{n_{FeCO3}} = 0.2O$

<u>n</u>_{NaOH} IS: <u>0.20</u>

<u>n</u>_{Fe(HCO3)2} IS: <u>0.10</u>

<u>n</u>_{FeCO3}IS: <u>0.20</u>

3) Given the following 2 reactions:

1, $FeCO_3$ ----> FeO + CO_2

and

2.
$$Fe_2(CO_3)_3 \longrightarrow Fe_2O_3 + 3CO_2$$

Starting with 1 mole <u>total</u> of $FeCO_3$ and $Fe_2(CO_3)_3$, 1.5 mol of CO_2 are obtained. Calculate the starting number of moles of $FeCO_3$. (10 pts)

$$\begin{array}{l} n_{\text{CO2(TOTAL)}} = \ 1.5 = \ n_{\text{CO2(rxn 1)}} + \ n_{\text{CO2(rxn 2)}} \\ n_{\text{CO2(TOTAL)}} = \ 1.5 = \ n_{\text{FeCO3}} + \ 3 \ n_{\text{Fe2(CO3)3}} \\ n_{\text{CO2(TOTAL)}} = \ 1.5 = \ n_{\text{FeCO3}} + \ 3 \ (1 - n_{\text{FeCO3}}) \\ \therefore \ n_{\text{FeCO3}} = \ 0.75 \end{array}$$
ANSWER IS: 0.75

 The following <u>gaseous</u> reaction occurs in a vessel of 50.0 L volume at 300 K.

$$N_2H_4 + 5 F_2 \longrightarrow 2 NF_3 + 4 HF$$

Initially, three moles of N_2H_4 and two moles of F_2 are mixed in this vessel. The reaction then occurs until the reactant in limiting quantity is totally consumed. (12 pts - 4 pts each part) Molar masses: N_2H_4 (32.0), F_2 (38.0), HF (20.0), NF_3 (71.0)

- a) Which reactant is limiting? ANSWER IS: \underline{F}_2
- b) How many moles of the reactant in excess remain, when the reaction is complete?

ANSWER IS: 2.6

c) How many grams of NF₃ are produced?

ANSWER IS: <u>56.8</u>

5) What volume of CO_2 can be produced from the reaction of 13.1 g of

 N_2O (as shown below)? Assume an excess of C_3H_8 , and take the

density of CO₂ to be 1.96 $\frac{g}{L}$. Molar masses: N₂O = CO₂ = 44.O (8 pts)

$$10 \text{ N}_2\text{O}_{(g)} + \text{C}_3\text{H}_{8(g)} \longrightarrow 10 \text{ N}_{2(g)} + 3 \text{ CO}_{2(g)} + 4 \text{ H}_2\text{O}_{(g)}$$

i) 2.00 L ii) 2.24 L iii) 3.50 L iv) 6.00 L

ANSWER IS: \underline{i}

6) Given the reaction:

 $2 C_4 H_{10(g)} + 13 O_{2(g)} \longrightarrow 8 CO_{2(g)} + 10 H_2 O_{(g)}$

How many liters of CO_2 were recovered by burning 20 L of C_4H_{10} ?

(P and T constant) if the percent yield was 75 % . (8 pts)

Give 4 pts if their answer is iv

ANSWER IS: <u>ii</u>

7) An unknown gas has a density of 6.36 ^g/_L at a pressure of 0.912 atm and a temperature of 57°C. What is the molar mass of this gas?
R = 0.0821 ^{L:atm}/_{mol·deg} (8 pts)
i) 28.0 g/mol ii) 114 g/mol iii) 146 g/mol iv) 189 g/mol

ANSWER IS: **<u>iv</u>**

- 8) What would be the density of the gas from question 8 if its temperature and pressure returned to STP? (6 pts) CREDIT FOR THIS IS BASED UPON YOUR ANSWER FROM QUESTION 8.
 - i) 1.25 g/L ii) 5.09 g/L iii) 6.52 g/L iv) 8.43 g/L

ANSWER IS: _____

9) GIVEN: ZrCl₂ is zirconium(II)chloride; ZrCl₄ is; NaVO₃ is sodium vanadate. For the following: where there is a formula, give it's name; where there is a name, give it's formula. (12 pts - 2 points each.)

- i) $Zr(SO_4)_2$: zirconium(IV)sulfate
- ii) SF₆ sulfur hexafluoride
- iii) zirconium(II)vanadate : $Zr(VO_3)_2$

iv) CrBr₃: chromium(III)bromide <u>OR</u> chromic bromide

v) ferric phosphate :
$$FePO_4$$

vi) aluminum chromate $Al_2(CrO_4)_3$ BALANCE THE FOLLOWING EQUATIONS BY INSERTING INTEGERS IN THE

SPACES PRECEDING THE FORMULAS. (5 pts each)

10) $C_{3}H_{8}O + KClO_{4} ----> CO_{2} + H_{2}O + KCl$

$$\underline{4} \operatorname{C}_{3} \operatorname{H}_{8} \operatorname{O} + \underline{9} \operatorname{KClO}_{4} \longrightarrow \underline{12} \operatorname{CO}_{2} + \underline{16} \operatorname{H}_{2} \operatorname{O} + \underline{9} \operatorname{KCl}_{2}$$

11)
$$\operatorname{Ca}(N_3)_2 + I_2 \longrightarrow \operatorname{Ca}I_2 + \operatorname{NI}_3$$

 $\underline{1} \operatorname{Ca}(N_3)_2 + \underline{10} \operatorname{I}_2 \longrightarrow \underline{1} \operatorname{Ca}I_2 + \underline{6} \operatorname{NI}_3$
THE 1 (ONE) MAY BE OMITTED.

12) A compound Q is composed of the elements D, L, and M. For every 2 atoms of D, there are 3 atoms of L and 2 atoms of M. Starting with O.24O x 10²³ atoms of D, and O.O7OO moles of L, exactly 1.2O g of M react . First write the formula of the compound. HINT: This is a limiting quantity problem. (10 pts)

The molar mass (atomic weight) of element M is,

i)
$$3O \frac{g}{mol}$$
 ii) $45 \frac{g}{mol}$ iii) $6O \frac{g}{mol}$ iv) $9O \frac{g}{mol}$
(3 pts) FORMULA IS: $D_2L_3M_2$
(3 pts) MOLES GIVEN: $n_D = O.O4O$ $n_L = O.O7O$ $n_M = \frac{1.2O}{F}$
(4 pts FOR FINISHING) MOLES USED:
 $n_D = O.O4O$ $n_L = O.O6O$ $n_M = O.O4O = \frac{1.2O}{F}$

ANSWER IS: \underline{i}

13) Give the formal charge of each indicated atom in the thiosulfate $(S_2O_3^{2^-})$ anion. (8 pts)

14) Indicate which <u>reactant species</u> is the Lewis acid and which is the Lewis base in the following reaction. HINT: Think Lewis structure. (4 pts)

ACID BASE AlCl₃ + O(CH₃)₂ ----> $Cl_3Al-O(CH_3)_2$ 15) Give the conjugate acid of (CH₃)₂NH. (4 pts)

ANSWER IS: $(CH_3)_2 NH_2^+$

16) Give the hydrated form of the anhydrous acid I_2O_5 . (4 pts)

ANSWER IS: \underline{HIO}_3

17) Give the formula for the anhydrous form of H_2SeO_4 . (4 pts)

ANSWER IS: SeO3

18) Beaker A contains O.1OO L of an O.2O M KOH solution; beaker B contains O.1OO L of an O.4O M HCl solution. The contents of both beakers are thoroughly mixed together in a sufficiently large third beaker. The molarity, M, of the resulting salt solution is; (8 pts)

i) O.O5 M. ii) O.10 M. iii) O.20 M. iv) O.40 M. v) no salt is formed.

$$M = \frac{O.O2O \text{ mol KCl}}{O.200 \text{ L}} = O.10 \text{ M}$$
ANSWER IS: ii

19) Complete combustion (burning) of two (2) liters of a gaseous hydrocarbon, C_XH_y , to $CO_{2(g)}$ and $H_2O_{(g)}$ required 14 liters of pure $O_{2(g)}$. All volumes were measured at the same temperature and pressure. The <u>TOTAL</u> volume of the products, CO_2 and H_2O , is 18 liters. The unbalanced reaction is,

 $C_xH_y + O_2 \longrightarrow CO_2 + H_2O$

The most likely molecular formula of the hydrocarbon is; (10 pts)

i)
$$C_6H_{12}$$
 ii) C_5H_{12} iii) C_4H_{10} iv) C_5H_8
 $2C_xH_y + 14 O_2 ----> 2x CO_2 + y H_2O$
BALANCING VOLUME, $2x + y = 18$; BALANCING O ATOMS, $4x + y = 28$
 $x = 5$ AND $y = 8$
YOU CAN ALSO DO THIS BY TRIAL AND ERROR

ANSWER IS: **<u>iv</u>**