DESTROY

ANSWER KEY

	STRY S14O4 SSOR J. MOR	M 7/2	9/99	
PRINT 1	NAME, LAST	î:		
	FIRST:			
	I.D.#:		_	
	MAXIMUM P	OINT VALUE IS IN PARENTHI	ESIS	
1	(6)	9(10)	17	(6)
2	(9)	10(20)	18	(6)
3	(10)	11(6)	19	(6)
4	(20)	12(6)	20	(6)
5	(6)	13(6)	21	(6)
6	(15)	14(10)	22	(6)
7. 8.	(12) (8)	15(6) 16(6)	23 24	
COLUM	N TOTALS: (N	MAXIMUM)		
	(86)	(70)		(48)
EXA	M TOTAL (18	86 pts)	OUT OF 100	_

Ionization Energies (kJ/mol)

	Fe	
First		759
Second	156	_
Third		2957
Fourth		417

A compound, ilmenite, (FeTiO₃) is composed of either Fe²⁺ and Ti⁴⁺ ions \overline{OR} Fe³⁺ and Ti³⁺ ions. Which combination, (Fe²⁺ and Ti⁴⁺) or (Fe³⁺ and Ti³⁺) is more reasonable. (6 pts) SHOW WORK

Fe³⁺ and Ti³⁺ requires 9897 kJ to form Fe²⁺ and Ti⁴⁺ requires 11,115 kJ to form

ANSWER IS: Fe³⁺ and Ti³⁺

2) Give the electronic configuration (1s² etc) <u>and</u> the number of unpaired electrons (UE) in each of the following gaseous atoms/ions. (9 pts - 3 pts each: 2 pts/1 pt)

Cu
$$1s^2,2s^2,2p^6,3s^2,3p^6,4s^2,3d^9$$
 UE = 1
 $OR 1s^2,2s^2,2p^6,3s^2,3p^6,4s^1,3d^{10}$

$$Cu^{+} 1s^{2},2s^{2},2p^{6},3s^{2},3p^{6},4s^{1},3d^{9} \qquad UE = 2$$

$$\underline{OR} 1s^{2},2s^{2},2p^{6},3s^{2},3p^{6},4s^{0},3d^{10} \qquad UE = 0$$

$$Cu^{2+} 1s^{2},2s^{2},2p^{6},3s^{2},3p^{6},4s^{0},3d^{9} \qquad UE = 1$$

- 3) An ionic crystalline solid, MX₃, has a cubic unit cell. Which of the following arrangements of the ions is consistent with the stoichiometry of the compound? (10 pts)
 - i) M^{3+} ions at the corners, X^{-} ions at the face centers.
 - ii) M^{3+} ions at the corners, X^{-} ions at the body center.
 - iii) X⁻ ions at the corners, M³⁺ ions at the face centers.
 - iv) X⁻ ions at the corners, M³⁺ions at the body center.
 - v) M^{3+} ions at the corners and the body center, X^{-} ions at the face centers.

ANSWER IS: i

4) Magnetite, Fe_3O_4 (231.54 $\frac{g}{mol}$), has a density of 4.897 $\frac{g}{cm^3}$. It is an orthorhombic crystal with a = b = 11.86 Å and c = 16.75 Å. How many formula weight units of Fe_3O_4 are there per unit cell? How many Fe^{2+} ions and how many Fe^{3+} ions are there per unit cell? (20 pts) SHOW WORK

The number of formula weight units is:

$$\frac{\text{molecules}}{\text{uc}} = (\frac{\text{molecules}}{\text{mol}})(\frac{\text{mol}}{\text{g}})(\frac{\text{g}}{\text{cm}^3})(\frac{\text{cm}^3}{\text{Å}^3})(\frac{\text{Å}^3}{\text{uc}})$$

$$\frac{\text{molecules}}{\text{uc}} = (6.022 \text{x} 10^{23})(\frac{1}{231.54})(4.897)(10^{-24})(16.75)(11.86)^2 = 30$$

(12 pts) # of Formula weights:
$$30$$

(4 pts) # of Fe²⁺ ions:
$$30$$

(4 pts) # of Fe³⁺ ions:
$$60$$

5) Pervoskite is a material containing calcium, titanium, and oxygen. The cubic unit cell is shown below.

$$\mathbf{x} = \mathbf{T}_{\mathbf{1}}^{4}$$

$$0 = 0^{2}$$

$$\bullet$$
 = Ca²⁺

Ionic radii:
4
Tei 0.360 Å; 2 Ce 1.450 Å density = 4.759 g/cm Molar mass = 135.96 g/r

Calculate the unit cell edge length in Å. (6 pts)

unit cell edge length =
$$2(O.36O \text{ Å}) + 2(1.45O \text{ Å})$$

ANSWER IS: <u>3.62 Å</u>

6) Osmium is one of the worlds most expensive elements. The abundance of osmium is 2×10^{-4} ppm (parts per million) and it has a melting point of

 3045° C. Last year one kilogram of this element sold for 78 *million* dollars. Aside from all of this fascinating information, osmium crystallizes in a face centered cubic lattice. The atomic radius of osmium is 1.352 Å, and its molar mass is $190.2 \frac{g}{mol}$. (15 pts)

a) Calculate the density of osmium. (10 pts) SHOW WORK

FOR fcc unit cell,
$$a = (8^{1/2})r = (2.829)(1.352) = 3.824 \text{ Å}$$
 (3 pts)

$$\frac{g}{\text{cm}^3} = (\frac{g}{\text{mol}})(\frac{\text{mol}}{\text{molecule}})(\frac{\text{molecules}}{\text{uc}})(\frac{\text{uc}}{\mathring{\text{A}}^3})(\frac{\mathring{\text{A}}^3}{\text{cm}^3})$$

density =
$$(190.2)(\frac{1}{6.022 \times 10^{23}})(4)(\frac{1}{3.824})^3(10^{24}) = 22.59 \frac{g}{cm^3}$$
 (7 pts)

ANSWER IS: 22.59

b) Calculate its molar volume $(\frac{\text{cm}^3}{\text{mol}})$. (5 pts)

$$\frac{\text{cm}^3}{\text{mol}} = (\frac{\text{cm}^3}{\text{g}})(\frac{\text{g}}{\text{mol}}) = (\frac{1}{22.59})(190.2) = 8.42 \frac{\text{cm}^3}{\text{mol}}$$

ANSWER IS: <u>8.42</u>

- 7) Give the hybridization for each underlined atom in the following ions. Also give the <u>actual</u> spatial appearance of the ion. If the ion cannot exist, write CNE, in space provided. (ie. sp2 / trigonal)
 Group numbers: N (5), Cl (7), S (6), F (7) (12 pts 3 pts each)
 - i) $\underline{I}F_4^+$ $\underline{sp}^3\underline{d}/\underline{seesaw}$
 - ii) \underline{SF}_5^+ $\underline{sp}^3\underline{d}/\underline{trigonal\ bipyramid}$
 - iii) <u>N</u>F₄⁻ <u>CNE</u>
 - iv) $\underline{B}F_4^+$ CNE

8) State how many of each of the following types of elements of symmetry exist in chlorofluoromethane. (8 pts)

chlorofluoromethane SP³ hybridized

9) State how many of each of the following types of elements of symmetry exist in square based pyramid below. (10 pts)

center of symm@1

two fold axis of rotation, 0

three fold axis of rotation, @

four fold axis of rotation, 10

planes of symme**4**:

Use the MO correlation diagram below (where needed) to answer questions 10, 11, and 12.

	$\underline{}$ σ^* 2 p_x		
 			π^*2p_y,π^*2p_z
	_ G 2p _x		
			$\pi 2p_{y,} \pi 2p_{z}$
	σ *2s		
		O 2s	
		σ *1s	
 	σ 1s		

10) Predict the apparent bond order, relative bond length, and number of unpaired electrons in the following species; CO, BN, and BeC.
 Where relative values are compared, use < or > otherwise use the calculated numerical values. (20 pts)

		CO		BN	BeC
Bond order	3		2	1	
Bond Length		<		<	
Bond enthalpy		>		>	
Number of unpaired electrons	О	1	Ō		,

11) If light of the proper wavelength is used an electron in the π_{2p_y} molecular orbital is excited to the $\pi^*_{2p_y}$. What is the bond order after this transition in BeC? (6 pts)

bond order
$$= O$$

12) List the following in order of increasing bond length: Li_2 , Ne_2^+ , and F_2 . (6 pts)

$$F_2 < Li_2 < Ne_2^+$$

13) The bond order of each of the following, C-H, O-H, and F-H, is 1. List them in order of decreasing bond enthalpy. (6 pts)

$$F-H > O-H > C-H$$

14) The molecule BNH₂Cl₂ exists in two forms, a cis form and a trans form.

GIVEN: Bond enthalpies (kJ/mol): B=N (511); N-N (163); B-N (212); N-H (388); N-Cl (381); B-H (551); Cl-Cl (243); B-Cl (349)

$$Cl$$
 $B = N$
 Cl
 $B = N$
 H
 Cl
 H
 Cl
 H
 H
 Cl
 H
 H

Calculate the energy per molecule $(\frac{J}{\text{molecule}})$, required to convert the trans form to the cis form. (10 pts)

i)
$$8.48 \times 10^{-19}$$
 ii) 4.97×10^{-19} iii) 3.52×10^{-19} iv) 2.67×10^{-19} $\mathcal{E}\left(\frac{J}{\text{molecule}}\right) = (\frac{kJ}{\text{mol}})(\frac{J}{kJ})(\frac{\text{mol}}{\text{molecule}}) = (511-212)(10^3)(\frac{1}{6.022 \times 10^{23}})$

GIVE 4 pts FOR EITHER i or iii ANSWER IS: ii

THE FOLLOWING PERIODIC TABLE MAY BE OF USE IN ANSWERING THE REMAINING PROBLEMS.

Group Number

		I _A		IIĬ	IV _A	V _A	VIA	VIĬ	Inert gas	
Period	2	Li 1.0	Ве 1.5	B 2. 0	C 2.5	N 3.0	O 3.5	F 4.0		
	3	Na 0.97	Mg	Al <u>1.5</u>	Si	P 2.1	S 2. 5	Cl 3.0		
		<u>¥</u> 0.90	Ca	Ga	Ge	As	Se 2.4	Br 2.8		
	5	Rb 0.87	Sr	In	Sn	Sb	Te	I 2.5		

Beneath most symbols are electronegativity values. Pluse them where necessary in answering this question.

- 15) List the following atoms in order of decreasing $2^{\underline{nd}}$ ionization energy: O, S, and K. (6 pts) O > K > S ACTUAL VALUES (kJ): 147 133 98
- 16) List the following in order of decreasing radius.

$$Na^{+}, Mg^{+}, and K^{+}.$$
 (6 pts) $Mg^{+} > K^{+} > Na^{+}$

- 17) List the ions S^{2-} , P^{3-} , and N^{3-} , in order of increasing ionic radius, that is, the largest is last. (6 pts) $N^{3-} < S^{2-} < P^{3-}$
- 18) List the following ions in order of decreasing ionic radius.

$$Li^{+}$$
, Be^{3+} , and B^{+} (6 pts) $B^{+} > Li^{+} > Be^{3+}$

19) List the following gases in order of decreasing molecular bond enthalpy P₂, S₂, and Cl₂. Lowest goes last. (6 pts)

$$P_2 > S_2 > Cl_2$$

- 2O) List the following atoms in order of decreasing 3rd ionization energy. Li, Na, and Al (6 pts) Li > Na > Al

 ACTUAL VALUES (kJ): 510 301
- 21) Which of these molecules is/are non-polar; IF₃, BF₃, NF₃, SF₄, XeF₄? (6 pts)

 ANSWER: BF₃, XeF₄
- 22) Circle the stronger acid in each of the following pairs.
 - i) $H_2S_2O_3$ or $H_2S_4O_6$ (3 pts)
 - ii) HIO_3 or $HClO_3$ (3 pts)
- 23) Match up the following bond enthalpies (in kJ/mol), 163, 36O, 412, and 436, , with the indicated molecules; (6 pts)

24) In a multi-electron atom, how many electrons can have the following sets of quantum numbers? (6 pts - 2 pts each)

i)
$$n = 3$$
, $m_{\lambda} = 0$, $m_{S} = -\frac{1}{2}$

ii)
$$n = 4$$
, $m_{\lambda} = -2$, $m_{S} = +\frac{1}{2}$

iii)
$$n = 4$$
, $m_{\lambda} = +2$