Thermodynamics

Energy can be used

- * to provide heat
- * for mechanical work
- * to produce electric work
- * to sustain life

Thermodynamics is the study of the transformation of energy into heat and for doing work Why is propane (C_3H_8) a better fuel than benzene (C_6H_6)?

What compound are feasible as alternate fuels or clean fuels?

Why are carbohydrates, proteins and fats fuels for our bodies?

Why is ATP (adenosine triphosphate) an "energy-rich" molecule?

Terminology - System, Surroundings & State Functions

System: object(s) under observation. In a chemical reaction, the reaction mixture is the system.

Surrounding - everything else not considered to be the system.

Transfer	between a	system and	surrounding
Inditoron		system and	Carrounding

System	Energy	Matter
Open	Yes	Yes
Closed	Yes	No

State: macroscopic, measurable properties, like composition, volume, pressure, temperature, which define a system.

Process - the path the system undergoes to change from an initial state to a final state.

State function: depend on initial and final values and not the path that the system underwent in changing the values of these variables. The variables V, P, T and n are state functions.

Figure 10-5 Differences in state properties (such as the difference in altitude between no points) are independent of the path traced going from one to the other. Other properties (such as the total distance traveled) depend on the particular path that is followed.

Energy

Objects can posses energy either as kinetic energy (KE) or potential energy (PE).

The total energy, or the INTERNAL energy of the system E = KE + PE

Units of energy - calorie (cal) or joule (J) 1 cal = 4.184 J

The nutritional calorie (Cal) = 1000 cal = 4184 J or 4.184 kJ

Energy, Work and Heat

Energy is the capacity to do work or transfer heat.

Work: Energy used to move an object.

Heat: Energy transferred from a hotter body to a colder body.

Work

mechanical work = force x distance

If the direction of the applied force is in the same direction as the displacement, work is done on the body; w > 0

If the direction of the applied force is opposite to the direction of the motion of the body, work is done against the body ; w < 0

Energy and Work in a Mechanical System

The work done in stopping a moving object, or pushing an object causes a change in the kinetic energy of the system

 $\mathbf{w} = \Delta \mathbf{K} \mathbf{E} = \Delta \left(\frac{1}{2} \mathbf{m} \mathbf{v}^2 \right)$

The work done in raising an object from one height to another changes the potential energy of the object

 $\mathbf{w} = \Delta \mathbf{PE} = \mathbf{m} \mathbf{g} \Delta \mathbf{h}$

Pressure-Volume Work

Work done in expanding a gas against an external pressure, or to compress a gas causes a change in volume.

w = - $P_{ext} \Delta V$ (constant P) where $\Delta V = V_{final} - V_{initial}$

If the gas expands $\Delta V > 0 =>$ work done by the gas (pushes against surrounding); work < 0

If the gas is compressed $\Delta V < 0 =>$ work done on the gas (by the surrounding); work > 0

Heat

When the temperature of a system changes, the internal energy of the system changes.

 $\Delta E = E_f - E_i$

If heat flows into the system, at constant volume, and there is no phase change, the temperature increases and ΔE is positive.

If ΔE is negative (at constant volume), heat has flown out of the system and its temperature decreases.

Heat, and hence changes in energy, accompany almost all chemical reactions.

When a chemical reaction occurs by absorbing heat from its surroundings, the reaction is said to be **ENDOTHERMIC**.

When a chemical reaction is accompanied by the release of heat, the reaction is said to be **EXOTHERMIC**.

Energy, Work and Heat

Heat exchange between the system and surrounding is one way of changing the energy of the system

Work done by the system or on the system also changes the energy of the system.

The energy of the system changes when the system undergoes a process in which heat is exchanged between the system and the surroundings and/or work is performed. **Energy Conservation and The First Law of Thermodynamics**

- 1) Energy is conserved
- 2) Heat and work can produce equivalent effects
- 3) The only way that energy can be transferred is through heat and work.
- **First Law**
 - $\Delta \mathbf{E} = \mathbf{q} + \mathbf{w}$
- where
- ΔE is the change in internal energy of the system q is the heat involved during the process w work done during the process

Sign convention

The sign of ΔE indicates whether the final energy is less than or more than the initial energy.

The sign of ΔE depends on relative magnitudes and signs of q and w

If heat flows into the systemq > 0Heat flows out of the systemq < 0

Work done by the systemw < 0Work done on the systemw > 0

TABLE 5.1 Sign Conventions Used and the Relationship Among q , w , and ΔE			
Sign Convention for q	Sign of $\Delta E = q + w$		
q>0: Heat is transferred from the surroundings to the system	q>0 and w>0:∆E>0		
	$q > 0$ and $w < 0$: The sign of ΔE depends on the magnitudes		
q<0: Heat is transferred from the system to the surroundings	of gand w		
	q<0 and w>0: The sign of ∆ E depends on the magnitudes of q and w		
Sign Convention for w	- -		
w>0: Work is done by the surroundings on the system w<0: Work is done by the system on the surroundings	<i>q</i> <0and w<0:∆ <i>E</i> <0		

Like P, V, T, and n, ΔE is a state function since the change in ΔE depends only on the initial and final energies of the system and not on the details of the process the system underwent.

However changes in q and w take place during the process and hence depend on the nature of the process.

q and w are path dependent and called PATH FUNCTIONS.

Note: the 1st law does not give any indication how ΔE is divided between q and w.

Problem:

A gas expands against a constant pressure of 5 atm, from 10 to 20 L, absorbing 2kJ of heat. Calculate the work done and the change in the internal energy of the gas.

1 L-atm = 101.3 J

For a process which takes place at constant volume

w = - $P_{ext} \Delta V = 0$; if volume is constant

 $\Delta \mathbf{E} = \mathbf{q} + \mathbf{w}$

For constant volume processes, no work can be done

 $\Delta \mathbf{E} = \mathbf{q}_{\mathbf{v}}$

where q_v is the heat exchanged at constant volume

Enthalpy

Most physical and chemical changes take place under the constant pressure of the Earth's atmosphere.

The heat lost or gained by a system undergoing a process under constant pressure is related to the change in ENTHALPY (Δ H) of the system

 $\Delta H = H_{final} - H_{initial} = q_p$

Note: △H is a state function

Enthalpies of Chemical Reactions The enthalpy change for a chemical reaction is given by $\Delta H = \Sigma H(products) - \Sigma H(reactants)$ For example:

> $2H_2(g) + O_2(g) -> 2H_2O(g)$ $\Delta H = -483.6 \text{ kJ}$ Thermochemical reaction

- In a chemical reaction, the enthalpy change during the reaction indicates whether the reaction releases energy or consumes energy.
- If $\Delta H < 0$, the reaction releases heat and is **EXOTHERMIC**
- If $\Delta H > 0$, the reaction absorbs heat and is **ENDOTHERMIC**

The magnitude of ΔH for a reaction is directly proportional to the amount of reactants consumed by the reaction.

 $CH_4(g) + 2O_2(g) -> CO_2(g) + 2H_2O(I)$ $\Delta H = -890 \text{ kJ}$

Calculate the amount of heat that would be released when 4.50 g of $CH_4(g)$ is burned in an oxygen atmosphere at constant pressure.

4.50g CH₄ => 0.28 mole CH₄

=> (0.28 mol CH₄)(-890 kJ/mol CH₄) = -250 kJ

The enthalpy change for a reaction is equal in magnitude but opposite in sign to ΔH for the reverse reaction $CH_4(g) + O_2(g) \longrightarrow CO_2(g) + 2H_2O(I)$ $\Delta H = -890 \text{ kJ}$

 $CO_2(g) + 2H_2O(I) -> CH_4(g) + O_2(g)$ $\Delta H = +890 \text{ kJ}$

The enthalpy change for a reaction depends on the phase of the reactants and products.

1) $CH_4(g) + O_2(g) --> CO_2(g) + 2H_2O(I) \quad \Delta H = -890 \text{ kJ}$

2) $CH_4(g) + O_2(g) --> CO_2(g) + 2H_2O(g) \Delta H = -802 \text{ kJ}$

3) $2H_2O(g) --> 2H_2O(l)$ $\Delta H = -88kJ$

Enthalpy and Internal Energy

We know that $\Delta H = q_p$ (at constant pressure)

Since, $\Delta E = q + w$, if the volume is held constant, no pressurevolume work can be done on that system or by that system.

work = - $P_{ext} \Delta V = 0$ at constant volume

Hence, for constant volume processes, $\Delta E = q_v$

Enthalpy is defined as H = E + PV

For a system undergoing pressure-volume work, the change in enthalpy in the system is

 $\Delta \mathbf{H} = \Delta \mathbf{E} + \Delta \mathbf{PV}$

If the pressure is a constant external pressure, P_{ext} , $\Delta H = \Delta E + P_{ext} \Delta V$ From the 1st law: $\Delta E = q + w$

For constant P: $\Delta H = q_p + w + P_{ext}\Delta V$

Since w = - $P_{ext} \Delta V$ $\Delta H = q_p - P_{ext} \Delta V + P_{ext} \Delta V = q_p$

For experiments carried out at constant volume, ΔE is the quantity to use since changes in internal energy equal the amount of heat involved in the process.

However, chemical reactions are typically conducted under constant pressure conditions and hence ΔH is the more commonly used quantity.

Relationship between ΔH and ΔE

C(s) + 1/2 O₂(g) --> CO(g) △H = -110.5 kJ

Determine the change in internal energy accompanying this reaction.

 $\Delta H = \Delta E + \Delta (PV)$ $\Delta E = \Delta H - \Delta (PV)$ $\Delta (PV) = \Delta (nRT) = RT(\Delta n_g)$ $\Delta E = \Delta H - RT(\Delta n_g) \text{ or } \Delta H = \Delta E + RT\Delta n_g$

For this reaction $\Delta n_g = 0.5$ mol; hence $\Delta E = -111.7$ kJ

Calorimetry

Calorimetry is the measurement of the amount of heat flow and change in temperature accompanying a process.

Heat capacity (at constant pressure), C_P , of a body, is the amount of heat required to raise the temperature of the body by one degree at constant pressure.

Heat capacity =
$$C_P = \frac{q}{\sqrt{T}}$$

q is the amount of heat absorbed by the body

- ΔT is the rise in temperature
- Units of C_P: joule/K or cal/K

Molar heat capacity, c_P: amount of heat absorbed per mole of sample

Molar heat capacity = $c_P = \frac{C_P}{P}$

Units of c_P joule/(mole K)

 $\mathbf{q} = \mathbf{n} \mathbf{c}_{\mathbf{P}} \Delta \mathbf{T}$

Specific heat capacity, c_s: the amount of heat absorbed per unit mass of body

specific heat capacity = $c_s = \frac{C_P}{m}$

Units of c_s joule/(g K)

 $q = m c_s \Delta T$

Problem: How much heat is needed to warm 250g (~ 1 cup) of water from 22°C to near its boiling point 98°C. The specific heat of water is 4.18 J/(g-K)?

q = m c_s ∆T q = (250g) (4.18 J/(g-K)) (76K) = 7.9 x 10⁴ J 1st Law: $\Delta E = q + w$ Work = - P_{ext} ΔV

At constant volume, w = 0; $\Delta E = q_v$ At constant pressure, $\Delta H = q_p$ $\Delta H > 0$ endothermic $\Delta H < 0$ exothermic $\Delta H = \Delta E + RT \Delta n_q$

Calorimetry:

heat gained by colder object = heat lost by warmer object

If two objects at different temperatures are in contact with one another, heat flows from the hotter body to the colder body in an attempt for the system to reach an equilibrium.

Assuming that there is no heat lost to the surroundings, then: heat lost by hotter object = heat gained by cooler object

 $n_{1}c_{P1}\Delta T_{1} = n_{2}c_{P2}\Delta T_{2}$ $n_{1}c_{P1}(T_{f1} - T_{i1}) = n_{2}c_{P2}(T_{f2} - T_{i2})$

Problem

When 50.mL of 1.0M HCI and 50.mL of 1.0M NaOH are mixed in a calorimeter, the temperature of the resultant solution increases from 21.0°C to 27.5°C. Calculate the enthalpy change per mole of HCI for the reaction carried out at constant pressure, assuming that the calorimeter absorbs only a negligible quantity of heat, the total volume of the solution is 100. mL, the density of the solution is 1.0g/mL and its specific heat is 4.18 J/g-K.

q_{rxn} = - (c_s solution J/g-K) (mass of solution g) (∆T K) = - (4.18 J/g-K) [(1.0g/mL)(100 mL)] (6.5 K) = - 2700 J or 2.7 kJ

 $\Delta H = 2.7 \text{ kJ}$

Enthalpy change per mole of HCI = (-2.7 kJ)/(0.050 mol)

= - 54 kJ/mol

Bomb calorimeter: used to determine heats of combustion and caloric values of foods.

Experimentally determine heat capacity of calorimeter $q_{rxn} = -C_{calorimeter} \Delta T$ **Problem**

When methylhydrazine, CH₆N₂, a rocket fuel, undergoes combustion the following reaction occurs:

 $CH_6N_2(I) + 5 O_2(g) -> 2N_2(g) + 2CO_2(g) + 6H_2O(g)$ When 4.00 g of $CH_6N_2(I)$ is combusted in a bomb calorimeter, the temperature of the calorimeter increases from 25.00°C to 39.50°C. In a separate experiment, the heat capacity of the calorimeter is measured to be 7.794 kJ/°C. What is the heat of reaction for the combustion of a mole of $CH_6N_2(I)$?

 $\mathbf{q}_{rxn} = - \mathbf{C}_{calorimeter} \Delta \mathbf{T}$

= - (7.794 kJ/°C) (14.50°C) = -113.0 kJ

Heat of reaction per mole of CH₆N₂(I)

 $(-113.0 \text{ kJ})/(0.0868 \text{ mol}) = 1.30 \times 10^3 \text{ kJ/mol}$

Calorimetry of Foods

Most of the energy our bodies need comes from the metabolism of carbohydrates, fats and proteins.

Carbohydrates decompose into glucose, C₆H₁₂O₆.

Metabolism of glucose produces CO_2 and H_2O and energy $C_6H_{12}O_6(s) + 6O_2(g) --> 6CO_2(g) + 6H_2O(l)$ $\Delta H = -2803 \text{ kJ}$ The combustion of tristearin $C_{57}H_{110}O_6$, a typical fat: $2C_{57}H_{110}O_6 + 163O_2$ (g) --> 114 CO_2 (g) + 110 H_2O (l) $\Delta H = -75,520$ kJ

On average, the metabolism of proteins produces ~ 4 Cal/g carbohydrates produces ~ 4Cal/g fats produces about ~ 9 Cal/g

(1 Cal = 1000 cal; I Cal = 4.184 kJ)

Amount Per Serving	
Calories 240 Calories	from Fat 25
76 1	Daily Value
Total Fat 3g	5%
Saturated Fat 1.5g	8%
Cholesterol 15mg	5%
Sodium 150mg	6%
Potassium 450mg	13%
Total Carbohydrate 45g	15%
Dietary fiber 1g	43
Sugars 42g	
Protein 9g	
Vitamin A 2% • Vitan	nin C 6%
Calcium 35% • Iron	0%
*Percent Daily Values are based on a dist.	a 2,000 calorie

Figur

Calculate Calories from amount of carbohydrate, protein and fats

(45g carb x 4 Cal/g carb) +
(9g protein x 4 Cal/g protein) +
(3g fat x 9 Cal/g fat) = 243 Cal

TABLE 5.4 Compositions and Fuel Values of Some Common Foods						
Approximate Composition (%by mass)				Fuel	Fuel Value	
	Carbohydrate	Fat	Protein	kJ/g	kcal/g	
Cashaberday	te 100			17	4	
Carbohydra [.] Fat	le 100	100	—	17 38	4 9	
	-	100	400		7 4	
Protein	-		100	17	4	
Apples	13	0.5	0.4	2.5	0.59	
Beer ^a	1.2	_	0.3	1.8	0.42	
Bread	52	3	9	12	2.8	
Cheese	4	37	28	20	4.7	
Eggs	0.7	10	13	6.0	1.4	
Fudge	81	11	2	18	4.4	
Græn beans	7.0	_	1.9	1.5	0.38	
Hamburger	_	30	22	15	3.6	
Milk (whole) 5.0	4.0	3.3	3.0	0.74	
Peanuts	22	39	26	23	5.5	
^a Beers typically contain 3.5 percent e than ol, which has fuel value						

Hess's Law

Known values of ΔH for reactions can be used to determine ΔH 's for other reactions.

 ΔH is a state function, and hence depends only on the amount of matter undergoing a change and on the initial state of the reactants and final state of the products.

If a reaction can be carried out in a single step or multiple steps, the ΔH of the reaction will be the same regardless of the details of the process (single vs multi- step).

 $\Delta H_6 = \Delta H_1 + \Delta H_2 + \Delta H_3 + \Delta H_4 + \Delta H_5$

 $CH_4(g) + O_2(g) -> CO_2(g) + 2H_2O(I)$ $\Delta H = -890 \text{ kJ}$

If the same reaction was carried out in two steps: $CH_4(g) + O_2(g) \longrightarrow CO_2(g) + 2H_2O(g)$ $\Delta H = -802 \text{ kJ}$ $2H_2O(g) \longrightarrow 2H_2O(l)$ $\Delta H = -88 \text{ kJ}$

$CH_4(g) + O_2(g) \longrightarrow CO_2(g) + 2H_2O(I) \qquad \Delta H = -890 \text{ kJ}$ Net equation

Hess's law : if a reaction is carried out in a series of steps, ΔH for the reaction will be equal to the sum of the enthalpy change for the individual steps. The enthalpy of combustion of C to CO_2 is -393.5 kJ/mol, and the enthalpy of combustion of CO to CO_2 is -283.0 kJ/mol CO. (1) C(s) + O_2 (g) --> CO_2 (g) $\Delta H = -393.5$ kJ

(2) CO(g) $+\frac{1}{2}O_2(g) -> CO_2(g) \Delta H = -283.0 \text{ kJ}$

Use this data to calculate the enthalpy change of combustion of C to CO

(3) C(s)
$$+\frac{1}{2}O_2(g) -> CO(g) \quad \Delta H = ?$$

To calculate \triangle H for (3) need to rearrange equations (1) & (2) Need C(s) and 1/2O₂(g) on the left and CO on the right C(s) + O₂ (g) --> CO₂ (g) $\Delta H = -393.5 \text{ kJ}$ CO₂ (g) --> CO(g) + $\frac{1}{2}$ O₂ (g) $\Delta H = 283.0 \text{ kJ}$

C(s) $+\frac{1}{2}O_2(g) --> CO(g)$ $\Delta H = -110.5 \text{ kJ}$

Calculate $\triangle H$ for the reaction: $2C(s) + H_2(g) \longrightarrow C_2H_2(g)$ given the following reactions and their respective enthalpy changes:

(1) $C_2H_2(g) + \frac{5}{2}O_2(g) --> 2CO_2(g) + H_2O(l) \Delta H = -1299.6kJ$ (2) $C(s) + O_2(g) --> CO_2(g) \Delta H = -393.5 kJ$ (3) $H_2(g) + \frac{1}{2}O_2(g) --> H_2O(l) \Delta H = -285.8 kJ$

To solve this problem, note that given reaction involves 2 moles of C(s).

Reaction (2) must be multiplied by 2 and the \triangle H for 2 moles of C(s) will be twice the \triangle H for 1 mole C(s) reacting

Also, need the reverse of equation (1)

(1) $2CO_2(g) + H_2O(I) --> C_2H_2(g) + \frac{5}{2}O_2(g) \Delta H = 1299.6kJ$ (2) $2C(s) + 2O_2(g) --> 2CO_2(g) \Delta H = -787.0 kJ$ (3) $H_2(g) + \frac{1}{2}O_2(g) --> H_2O(I) \Delta H = -285.8 kJ$

 $2C(s) + H_2(g) --> C_2H_2(g)$

∆H = -226.8 kJ

Enthalpies of Formation

 $\Delta \mathbf{H} = \Sigma \mathbf{H}_{\text{products}} - \Sigma \mathbf{H}_{\text{reactants}}$

The enthalpy of formation, $\Delta H_{\rm P}$, or heat of formation, is defined as the change in enthalpy when one mole of a compound is formed from its stable elements.

 $H_2(g) + 1/2 O_2(g) \rightarrow H_2O(g) \qquad \Delta H_f = -242 \text{ kJ}$

In order to compare the enthalpies of different reactions, it is necessary to define a set of conditions called the standard state.

The standard state of a substance is its pure form at atmospheric pressure of 1 atm and the temperature of interest (usually 298 K).

The most stable form of an element at 1 atm is defined as the standard state of that element.

The standard state of oxygen at 1 atm is $O_2(g)$, for nitrogen, $N_2(g)$.

The standard enthalpy of formation (ΔH_f^o) of a compound is defined as the enthalpy change for the reaction that forms 1 mole of compound from its elements, with all substances in their standard states.

The standard enthalpy of formation for ethanol, C_2H_5OH , is the enthalpy change accompanying the following reaction.

 $C(s) + O_2(g) + H_2(g) -> C_2H_5OH(I)$ $\Delta H_f^{o} = -277.7 \text{ kJ}$

The standard enthalpy of formation of the most stable form of an element under standard conditions is ZERO. ΔH_f^o for C(graphite), $H_2(g)$, $O_2(g)$ are zero

TABLE 5.3 Standard Enthalpies of Formation, ΔH_{f}^2 , at 298 K					
Substance	Formula	ΔH_f° (k[/mol)	Substance	Formula	ΔH_{f}^{2}
Jubsiance	гопша	(кј/ шал)	Substance	POITINA	(kJ/mol)
Acetylene	$C_2H_2(g)$	226.7	Hydrogen chloride	HCI(ş)	-92.30
Ammonia	$NH_3(\bar{s})$	-46.19	Hydrogen fluoride	$HF(\bar{g})$	-268.6
Benzene	C ₆ H ₆ (/)	49.0	Hydrogen iodide	$HI(\bar{g})$	25.9
Calcium carbonate	$CaCO_3(s)$	-1207.1	Methane	$CH_4(\mathcal{S})$	-74.8
Calcium oxide	CaO(s)	-635.5	Methanol	СН ₃ ОН(Л)	-238.6
Carbon dioxide	CO ₂ (_S)	-393.5	Propane	$C_3 H_8(\varsigma)$	-103.85
Carbon monoxide	$CO(\tilde{s})$	-110.5	Silver chloride	AgCI(s)	-127.0
Diamond	C(s)	1.88	Sodium bicarbonate	NaHCO ₃ (s)	-947.7
Ethane	$C_2H_6(g)$	-84.68	Sodium carbonate	$Na_2CO_3(s)$	-1130.9
Ethanol	$C_{2}H_{5}OH(2)$	-277.7	Sodium chloride	NaČl(s)	-410.9
Ethylene	$C_{2}H_{4}(s)$	52.30	Sucrose	C ₁₂ H ₂₂ O ₁₁ (s)	-2221
Glucose	$C_{h}H_{12}O_{h}(s)$	-1273	Water	H ₂ O(1)	-285.8
Hydrogen bromid e		-36.23	Watervapor	H ₂ O(<i>g</i>)	-241.8

The stoichiometry for formation reactions indicate the formation of 1 mole of the desired compound, hence enthalpies of formation are always listed as kJ/mol.

Using Enthalpies of Formation to calculate Standard Enthalpies of Reactions

Consider the combustion of propane (C_3H_8) gas to form $CO_2(g)$ and $H_2O(I)$

 $C_{3}H_{8}(g) + 5O_{2}(g) -> 3CO_{2}(g) + 4H_{2}O(I)$

This equation can be written as the sum of the following three equations

 $C_{3}H_{8}(g) \longrightarrow 3C(s) + 4H_{2}(g)$ $\Delta H_{1} = -\Delta H_{f^{o}}(C_{3}H_{8}(g))$

+ $3C(s) + 3O_2(g) -> 3CO_2(g)$ $\Delta H_2 = 3 \times \Delta H_f^{o}(CO_2(g))$

+ $4H_2(g) + 2O_2(g) -> 4H_2O(I)$ $\Delta H_3 = 4 \times \Delta H_f^{\circ}(H_2O(I))$

 $C_{3}H_{8}(g) + 5O_{2}(g) --> 3CO_{2}(g) + 4H_{2}O(I)$

 $\Delta H^{o}_{rxn} = \Delta H_1 + \Delta H_2 + \Delta H_3$

Looking up the table for the standard heats of formation for each equation

 $\Delta H^{o}_{rxn} = -(-103.85) + 3(-393.5) + 4(-285.8)) = -2220 \text{ kJ}$

In general,

- $\Delta H^{o}_{rxn} = \Sigma n \Delta H_{f}^{o} \text{ (products)} \Sigma m \Delta H_{f}^{o} \text{ (reactants)}$ where
- n and m are the stoichiometric coefficients in the reaction,
- and assuming that the ΔH_{f}^{o} 's are per mole

Calculate the standard enthalpy change for the combustion of 1 mole of benzene (C_6H_6 (I)) to $CO_2(g)$ and $H_2O(I)$. Compare the quantity of heat produced by the combustion of 1.00 g of propane ($C_3H_8(g)$) to that produced by 1.00 g of C_6H_6 (I)

First write a balanced equation for the combustion of 1 mole of C_6H_6 (I) C_6H_6 (I) + $\frac{15}{2}$ O₂ (g) --> 6CO₂ (g) + 3H₂O(I)

 $\Delta H^{o}_{rxn} = [6 \Delta H_{f}^{o}(CO_{2}) + 3\Delta H_{f}^{o}(H_{2}O)] - [1\Delta H_{f}^{o}(C_{6}H_{6}) + (15/2)\Delta H_{f}^{o}(O_{2})]$

= 6(-393.5 kJ) + 3(285.8 kJ) - 49.0 kJ - 7.5(0 kJ) = -3267 kJ For the combustion of 1 mole of propane $\Delta H^{\circ}_{rxn} = -2220 \text{ kJ}$ Hence for 1.00g propane, which corresponds to 0.0227 mol propane, $\Delta H^{\circ}_{rxn} = 0.0227 \text{mol x} -2220 \text{ kJ/mol} = -50.3 \text{ kJ/g}$

For C_6H_6 (I) => ΔH_{rxn}^{o} = - 41.8 kJ/g

The combustion of propane results in more energy released per gram compared to the combustion of benzene.

Fuels

During the complete combustion of fuels, carbon is completely converted to CO_2 and hydrogen to H_2O , both of which have large negative enthalpies of formation.

- $\Delta H_{f^{\circ}} (CO_{2}) = -393.5 \text{ kJ/mol}$
- $\Delta H_{f^{o}}(H_{2}O) = -242 \text{ kJ/mol}$

The greater the percentage of carbon and hydrogen in a fuel, the higher its fuel value.

TABLE 5.5 Fuel Values and Compositions of Some Common Fuels				
Approximate Elemental Composition (%)			ลไ	
	С	Н	0	Fuel Value (kJ/g)
Wood (pine) Anthracite coal (Pennsylvania) Bituminous coal (Pennsylvania) Charcoal Crude oil (Texas) Gasoline Natural gas Hydrogen	50 82 77 100 85 85 70 0	6 1 5 12 12 15 23 100	44 2 7 0 0 0 0	18 31 32 34 45 48 49 142

Global Energy Reserves (1988) (units of Q = 10 ²¹ J)				
Fuel Type	Proven Reserves	Est. Reserves		
Coal	25Q	118Q		
Oil	5Q	9Q		
Natural Gas	4 Q	10Q		

Note: Total amount of commercially energy currently consumed by humans ~ 0.5Q annually

The 100-year period when most of the world's oil will be produced is known as "Hubbert's peak." On this scale, the geologic time needed to form the oil resources can be visualized by extending the line five miles to the left.

US crude oil production

Alternate Fuels

Natural Gas and Propane

C(s) + O₂(g) --> CO₂(g) Δ H = -393.5 kJ/mol CH₄(g) + 2O₂(g) --> CO₂(g) + 2H₂O(l) Δ H = -890 kJ/mol C₃H₈(g) + O₂(g) --> 3CO₂ + H₂O Δ H = -2213 kJ/mol

Natural gas, primarily methane with small amounts of ethane and propane used for cooking and heating.

Highly compressed natural gas (CNG) - commercial vehicles.

Liquid petroleum gas (LPG) - propane - also used as a fuel for vehicles

Name	Heat released per gram
C(s)	34 kJ
CH ₄ (g)	55.6 kJ
$C_{3}H_{8}(g)$	50.3 kJ
Name	Heat released per mole of CO ₂ (g) released
C(s)	393.5 kJ
CH ₄ (g)	890 kJ
$C_{3}H_{8}(g)$	738 kJ

 $CH_4(g)$ and $C_3H_8(g)$ release more energy per gram and can be considered to be "cleaner" fuels.

Disadvantages: leakage of CH₄ from pipes, storage and transportation, need to be compressed

Methanol & Ethanol

Alcohols have the advantage over hydrogen and natural gas in that they are liquids at atmospheric pressure and temperature.

Compound	∆H _{combustion} (kJ/g)
CH ₃ OH(I)	-22.7
C ₂ H ₅ OH (I)	-29.7
CH ₄ (g)	-55.6
C(s)	-34

Ethanol can be produced from plant material Large scale production of methanol would likely start with coal

Hydrogen

 $H_2(g) + 1/2O_2(g) - \frac{spark}{2} > H_2O$ $\Delta H = -242 \text{ kJ/mol}$

Compound	$\Delta H_{\text{combustion}}$ (kJ/g)
CH ₃ OH(I)	-22.7
C ₂ H ₅ OH (I)	-29.7
CH ₄ (g)	-55.6
C(s)	-34
$H_2(g)$	-120

Advantages of using H₂ as a fuel energy released per gram low polluting

H₂/O₂ Fuel cells: Opposite of electrolysis of water

Electrical energy is produced when the following redox reaction occurs

$2H_2(g) + O_2(g) -> 2H_2O(g)$

(Washington, DC, August 2001). Projections:

Tables A1 and A18.

Figure 2. Energy consumption by fuel, 1970-2020

Energy Information Administration, Dept. of Energy http://www.eia.doe.gov/oiaf/aeo/index.html#production