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3. Angular Momentum States.

We now employ the vector model to enumerate the possible number of
spin angular momentum  states for several commonly encountered situations in
photochemistry.  We shall give examples for the important situations involving
the coupling of several electron spins, since these examples will capture the most
important features of cases commonly observed in photochemical sytems.  Of
these the most important is the coupling of two electron spins with one another.
After deducing the number of states that result from coupling of individual
spins, we shall be interested in the relative energy ranking of these spin states
when magnetic interactions and couplings are present.  These interactions and
couplings will be connected to molecular structure through the relationship of
spin angular momentum and magnetic moments due to spin.  The coupling of
magnetic moment due to spin with other magnetic moments will be the basis for
the understanding of both magnetic resonance spectroscopy and intersystem
crossing.  For magnetic resonance spectroscopy, the influence of an applied
laboratory magnetic field on the energy levels is of particular importance.  For
intersystem crossing, couplings of the electron spin with other sources of angular
momentum are important.

Before counting angular momentum states for the important commonly
encountered cases, we shall briefly review the principles of both classical angular
momentum  and quantum angular momentum and relate these quantities to the
vector model.

Classical Angular Momentum.   The Physics of Rotational Motion.

Classical angular momentum refers to the rotation motion of of an object
around a fixed point or about a fixed axis.  The two most important models of
angular momentum for chemistry are (1) a particle constrained to move in a
circular path with a fixed radius about a point (Figure 4, left) and (2) a spherical
body rotating about a fixed axis that passes through a point at the center of the
sphere (Figure 4, right). These two simple models capture the essence of the
origin of electron orbital angular momentum and to electron spin angular
momentum.

 We choose two definite physical models to visualize (1) orbital angular
momentum in terms of an electron of mass me travelling in a circular Bohr orbit
or radius r with angular velocity v, and (2) spin angular momentum in terms of
a spherical top or gyroscope spinning about an axis with a moment of inertia,
I, and an angular velocity, v (the moment of inertia is related to a radius of
gyration, r, rotating about the center of mass).  Let the orbital angular
momentum be symbolized by L and the spin angular momentum of a single
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electron  be symbolized by S.   According to classical mechanics the  values of L
and S are given by equations 1 and 2, respectively.

L  =  mvr (1)

S  = Iv (2)

According to classical mechanics, both the orbital and spin angular
momentum of a particle undergoing circular motion (as an electron in a Bohr
orbit) or a rotating top or gyroscope (as an electron spinning on its axis) may be
represented as a vector.  To visualize this vector we employ the "right hand
thumb rule" which states the angular momentum vector points in the direction
that a right-hand thumb points when the fingers of the right hand are turned in
the same sense as the rotation.  Figure 4 shows the vector representation of the
orbital angular momentum of an electron, L, in a Bohr orbit and of the spin
angular momentum, S, of a single electron spinning on its axis.  From classical
mechanics, the direction of the angular momentum vector is always
perpendicular to the plane defined by the circular motion of the electron in its
orbit or the rotation of the spherical electric charge.  The length of the vector
represents the magnitude of the angular momentum.  The important features of
the classical representation of angular momentum are:  (1) that angular
momentum can be represented by a vector whose direction is related to the
sense of the direction of rotation;  (2) that the representation of the vector can
be conveniently placed on the axis of rotation;  and (3) that the length of the
vector is proportional to the absolute magnitude of the angular momentum.  In
these diagrams the vector sizes are generally schematic and not to scale.
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Figure 4.  Classical representation of the angular momentum of an electron in a
Bohr orbit (left) and of an electron spinning about an axis (right).  The important
features to note are the angular momentum in both cases possesses a
characteristic circular motion:  in one case the mass of the particle is at a distance,
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r, from the axis of rotation,  and in the other case the center of mass is at a
distance, r, from the axis of rotation.

Quantum Electron Spin Angular Momentum

The results of classical angular momentum provide a clear physical model
for representation of orbital and spin angular momentum in terms of the vector
model.  Let us now consider the new features that are introduced by the laws of
quantum mechanics which spin angular momentum (both electronic and
nuclear) must obey.

The elementary components of an atom (electrons and protons) behave as
if they were spinning on an axis.  The motion of the electron spin (or a nuclear
spin) can be considered to be a "zero point" motion.  It  is eternal and cannot be
stopped.  The spinning electron is like a ltoy top that is simultaneously provided
with a pulse of rotational energy and magically freed from friction or other
means of dissipating the rotational energy.   Thus, the magnitude of an electron
spin is fixed and constant in time and cannot be changed.  These qualities are all
subsumed in the statement that an electron possesses exactly 1/2\ worth of spin
angular momentum.  Recall that \ is Planck's constant divided by 2 π.  The factor
2π is a natural consequence of the circular motion implicit in all forms of angular
momentum. No matter where the electron resides, in bonds with a partner of
opposite spin orientation, as an entity in a half occupied orbital, as a member of a
cluster of spins of the same orientation, or in orbitals of different angular
momentum (s, p, d, etc.), the spin of the individual electron is always 1/2\  exactly.
We shall see that the fact that the proton, 13C and other nuclei also possess
exactly 1/2 \  of spin angular momentum will allow them to couple with electron
spins and thereby be actively involved in magnetic resonance and intersystem
crossing.  This coupling will allow the conservation of angular momentum to be
maintained as angular momentum is exchanged between the coupled partners.
The situation will be completely analogous to maintaining conservtion of energy
while energy is being exchanged between coupled partners.

According to the laws of classical mechanics the angular momentum of a
rotqting body may assume any value or any direction of the angular momentum,
consistent with torques applied to the body.  This means that in a Cartesian
coordinate system, the angular momentum of a body around each of the three
perpendicular axes may take any value consistent with the magnitude of the
angular momentum.  Thus, if electron spin were a classical quantity, the
magnitude and direction of the vector representing the spin angular momentum
could assume any length, S, and any angle θ relative to the z-axis.  The situation
is quite different for a quantum mechanical particle, such as an electron or a
proton.  In the quantum case the amount of angular momentum is quantized
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and can achieve only certain definite values for any given value of the angular
momentum.  This means that only certain orientations of the angular
momentum can occur in physical space.  This in turn implies that only certain
orientations of the spin angular momentum vector are allowed in spin space.
What we mean by this is that for all measurable (stable) situations, the quantum
mechanical rules must be followed.  In certain, unstable, situations the rules are
temporarily modified and transition between states of different spin may occur.
Let us now review the rules for stable situations, i.e., the situations which will
determine the measurable magnetic energy levels from which transitions
between spin states can occur.  Then we will investigate how a given spin state
may become unstable and undergo radiative or radiationless transitions to
another spin state.

Quantum Rules of Spin Angular Momentum

According to the laws of quantum mechanics, an electron or group of
electrons can be characterized completely by certain quantum numbers. When
we say that an electron or a proton has a spin of 1/2 we usually are referring to
the electron's spin quantum number, S, rather than the magnitude of the spin
angular momentum.  However, when we say we are dealing with any particle
with spin of 1/2 we also mean that the particle has an inherent, irremovable
angular momentum of 1/2\ which can be measured in an experiment.   (The
quantum number for total spin will be represented by the plain type and care
will be taken to distinguish this unitless quantity from the magnitude of the spin,
which has the units of angular momentum).  For electron spin there are only two
pertintent quantum numbers:  S, the quantum number associted with the length
of the total spin and MS the quantum number assoicated with the orientation of
the total spin relative to the z axis.  The relationship between the quantum
number, S (unitless), and the magnitude of the total spin angular momentum S
(in units of \) is given by eq. 3a.  The pecular square root relationship of eq. 3a
will be discussed below.

Magnitude of S (units of \)  = [S(S  +  1)]1/2 (3a)

The possible values of S, the total electron spin angular momentum
quantum number, are given by eq. 3b, where n is 0 or a positive integer.

Possible values of S (unitless)  = n/2 (3b)

From eq. 3a and 3b we deduce that the total spin quantum number may be
equal to 0, 1/2, 1, 3/2, 2, etc. and that the magnitude of the spin angular
momentum may be equal to 0 \, (3/4)1/2 \, (2)1/2 \, (15/4)1/2 \, (5)1/2 \, etc.  We
shall see below that we need not deal with the square root quantities because the
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measuarble values of the spin on the z axis will bear a simple relationship to the
quantum number MS.

According to the laws of quantum mechanics spin angular momentum is
not only quantized in magnitude, but in orientation relative to the z axis in
physical space.  Therefore,  the vector representing spin can only assume certain
orientations relative to the z axis in spin vector space.  The quantum number
MS specifies the possible orientation of a given angular momentum in space.
This quantum number is analogous to the familiar quantum number for
orientation of orbitals in space, e.g., a p-orbital along the x, y or z-axis. The
measurable values of the possible orientations of spin angular momentum on the
z axis are given the quantum numbers, MS, where the possible values of MS are
given by eq. 4a.  The values of MS each correspond to an allowed measurable
value of Sz.

Possible values of MS (unitless)  =  S, (S -1),..., (-S) (4a)

The values of MS (unitless) are the same as the value of the angular
momentum of the spin (units of \) on the z-axis .  As a result of this relationship,
it is convenient to refer to the values of the spin angular momentum on the z axis
rather than the total spin angular momentum (which has the peculiar square root
character given in eq. 3a). For example, for S = 1/2, the possible values of MS are
+ 1/2 and -1/2 and for S = 1, the possible values of MS are +1,  0 and -1,
respectively.  The positive sign means that the head of the vector is pointing in
the positive direction of the z axis, and the negative sign means that the head of
the vector is pointing in the negarive direction of the z axis. For these values of
MS the values of Sz are  + 1/2 \ ,  -1/2 \, +1 \ , 0  \ and -1 \, respectively.   These
important cases will be considered in greater detail below.  We shall see that
nearly all cases of interest will only involve the coupling of only a few spins with
each other or with an applied field and can readily be extended conceptually to
more complicated cases.

From Eq.  4a we can conclude that for any given value for the total
quantum number of spin, S, there are exactly 2S + 1 allowed orientations of the
total spin.   This important conclusion is expressed in Eq. 4b, where M is termed
the multiplicity of a given state of angular momentum.

Multiplicity, M, of state with quantum number S  =  2S + 1 (4b)

Let us consider three simple, but common examples of S = 0, 1/2 and 1.
According to Eq. 4b, for S = 0, M = 1.  Thus, when there is only one spin state
when S = 0 and this is termed a singlet state.  For S = 1/2, M = 2.  Thus, when
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there are two spin states when S = 1/2 and this is termed a doublet state. For S =
1, M = 3. Thus, when there are three spin states when S = 1 and this is termed a
triplet state. In the absence of a magnetic field the two doublet states and the
three triplet states have the same energy (are degenerate).   However, the
application of a magnetic field (internal or external) removes the degeneracy as
we shall soon see.

Pythagorean Relationships and Spin Angular Momentum

The peculiar square root relationship of eq. 3a is embedded in the
remarkable trigonometric features of all vectors.  The triangular relationship
among vectors in 2 dimensions is  shown in Figure 5.  From the familar
Pythagorean theorem, Eqs. 5 a and 5 b provide a relationship between the square
of the total angular momentum S2 and the components on the z and x (or y) axis.
Note that the lengths |Sx|  =  |Sy| because of the cylindrical symmetry of the
x,y plane about the z axis.  This cylindrical symmetry has a profound influence
on the vector properties of spin.

S2  =  Sz2  +  Sx,z2  (5a)

S  =  (Sz2  +  Sx,z2 )1/2 (5b)
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Angular Momentum (Vector  
Quantity): 
 S is the total angular momentum
Sz is the component on the z axis
Sx,y is the component on the  x or y  
axis.  The units are in \.

z axis

|S|  =  S(S  +  1)1/2
|Sz|  =  S

|Sx,y|  = (S)1/2

Vector Length (Scalar Quantity): 
 |S|  is the total length of the 
angular momentum; |Sz| is the 
length of the component on the 
z axis;  |Sx,y| is the length of the  
component on the x or y axis.

z axis

θ
Vector Direction: The direction of the 
angular momentum vector is  
given by the angle θ  made by the 
vector with the z axis.  The value 
of θ  is given by cosθ  =  |Sz|/|S|.

Sz S

Figure 5.  Trigonometric relationships between the angular momentum vector
and the geometric axes.

By inspection of the vector diagram and use of trigonometry, if we require
the value of Sz to follow the quantum mechanical rules then the value of S must
also be constrained to values determined by the Pythagorean theorem through
eq. 5b!  Furthermore, the allowed values of the angle, θ, between S and Sz,  will
be given by elementary trigometric relationships through eq. 6, where the
magnitudes of S and Sz  conform to the allowed values of θ are those for which
the |Sz | and |S |.

 cosθ  =  |Sz|/|S| (6)

For example, for the case of S = 1/2 (Figure 6 below), the possible values
of θ are: (1) for MS = 1/2, θ = 55 o, for MS = -1/2, θ = 125 o. For the case of S = 1
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(Figure 7 below) , the possible values of θ are: (1) for MS = 1, θ = 45 o, for MS = 0,
θ = 90o and for MS = -1, θ = 135 o.

 Let us now consider the vector representation of spin quantization in
some detail for the two most important cases in photochemistry: a single spin
and two coupled spins.

Vector Model of a Single Electron Spin

Figure 6 shows the vector model for a single electron spin.  In the Figure
we show the angular momentum vector pointing perpendicular to the plane of
rotation of a rotating spherical electron.  Since the spin quantum number, S, of a
single electron is 1/2, according to eq. 3a, the value of the length of S for a single
electron is  [S(S  +  1)]1/2 =  (3/4)1/2 (values of S will always be in units of  \).
Thus the length of a single electron spin is independent of its orientation and is
= (3/4)1/2.  What are the possible orientations of S allowed by quantum
mechanics?  From equation 4a and 4 b, we deduce that there are two such states
(a doublet state) and that the possible values of Sz are +1/2  \ and -1/2 \.  From
eq. 6 we have computed that the possible angles these two states are θ = 55o and
125o relative to the z-axis (the direction parallel to the positive direction along
the z-axis is defined as 0o).  Thus, from Figure 6 we can readily visualize the two
possible orientations or an electron spin in terms of the vector model in two
dimensional spin space.  At this point the coordinates in the x,y plane are not
specified.  We shall return to this important issue when we deal below with the
uncertainty principle and cones of orientation of spin vectors.

z axis

+1/2 \
= 3

2

55o

\

-1/2 \

= 3
2

\

z axis

α

β

125 oSz

Sz

Figure 6.  Vector representation of a spin 1/2 particle (an electron, a proton, a
13C nucleus).  The symbol α refers to the spin wave function of a spin with Ms=
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+1/2 and the symbol β refers to the spin wave function of a spin with Ms = -1/2.
See text for discussion.

In quantum mechanics spin is represented by a wave function (the
mathematical details of which will not concern us).  The symbols α and β are
employed to represent the spin wave functions corresponding to the MS = 1/2
and -1/2 quantum numbers, respectively.   Thus, the spin vector with the 55o

value of θ is related to an α spin function and the spin vector with the 125o value
of θ is related a β spin function.  The α spin is said to be pointing "up" (relative to
the z-axis) and the β spin is said to be pointing "down" relative to ther z-axis.
The α and β representations of spin wave functions will be useful in describing
spin states which are strongly mixed.

Vector Model of Two Coupled Electron Spins.  Singlet and Triplet States.

When two particles possessing angular momentum interact or couple,
how many different states of total angular momentum can result from the
coupling?  Knowledge of the rules for coupling of angular momentum is very
important in photochemistry since various steps in most photochemical
processes will involve the coupling of one electron spin with another or the
coupling of one electron spin with some other form of angular momentum
intramolecularly or intermolecularly.  Evidentally, from eq. 3a and 3 b, quantum
mechanics constrains the number of angular momentum states that can exist, so
the number of states that can result from coupling must also be constrained! The
rules for coupling of angular momentum are very simple if the vector model is
employed.

Rule 1 is that the final total angular momentum (units of \) of a coupled
system can take on only three possible types of allowed values (eq. 3b):  (1) 0;  (2)
a positive half integer; or (3) a whole integer.

Rule 2 is that the allowed values of the spin differ from the maximum
value of the spin by one less fundamental unit of angular momentum, \, to
produce as many states as possible consistent with rule 1.

Let us apply these rules for the most important case of two electron spins
coupling with one another.  We start with the value of a single electron spin as
1/2 \.  From the rules, we first find the maximum value of the coupled angular
momentum on the z axis, which is simply the sum of the individual values, i.e.,
(1/2  +  1/2)\  = 1 \.  Thus, one of the possible coupled states will have a total
angular momentum of 1.  All other possible states will differ from the state of
maximum angular momentum by one unit of \ and must be positive or zero
(rule 2).  Clearly there is only one such state that follows the rules: the state for
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which the total angular momentum is 0.  Any other states would possess a negative
value for the total angular momentum, which is not allowed by the rules of quantum
mechanics.  Thus, from these simple considerations we conclude that the only
possible spin states that can result from the coupling of two individual electron
spins (or coupling of two spin 1/2 particles of any kind) correspond to total spin
angular momentum of 1 or 0.  These states possess the spin quantum number for
projection on the z axis of S = 1 and S = 0, respectively.

In Figure 7, the vector representation of the two possible state for two
coupled spins is shown.  In one case the two spins are antiparallel (S = 0) and so
that the angular momenta exactly cancel and the resulting spin is 0.  In this case
the only possible value of S is equal to 0, so this is a singlet state.  Notice that this
spin state possesses one α spin and one β spin.  When we consider electron
exchange  we cannot label this state as α1β2 or β1α2 because this would imply
that we can distinguish electrton 1 and eletron 2.  However, an acceptable spin
function for the singlet state turns out to be (1/2)1/2(α1β2 − β1α2), i.e., a mixture
of the two spin states (From this point on, we shall ignore a mathematically
required "normalization" factor of (1/2)1/2 when discussing the sin wave
function of the singlet state and shall drop the labels 1 and 2 which will be
implicit).   We can think of the - sign in the function αβ − βα as representing the
"out of phase" character of the two spin vectors which causes the spin angular
momentum of the individual spin vectors to exactly cancel.
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Figure 7.  Subtraction and addition of two spin 1/2 particles.  Upon addition, the
spin vectors add up (middle) to a total length of (2)1/2, but have a projections
(right) of 1, 0 and -1 on the z axis (right).  These representations apply to the
coupling of an two spin 1/2 particles, electrons with electrons, electrons with
nuclei and nuclei with nuclei.

The second possible state possesses S = 1 and is therefore a triplet state.
The angular momentum of the state can take three possible orientations in
physical space, as can the vector representing the angular momentum in spin
space.  The vector model of the triplet state reveals some rather interesting
features which result from the rules of quantum mechanics and the rules of
vector additions.  In order to arrive at a resultant angular momentum
corresponding to a vector length of 1 \ on the z axis (i.e., a total spin vector length
of  (1/2)1/2 \ ), using individual component vectors whose lengths are (3/4)1/2 \ ,
the individual vectors cannot lie at an arbritrary orientation, but must make a
definite angle with one another.  Have a definite angle to one another is
equivalent to having a definite phase (angular) relationship of the two vectors.
From triogonometry, if the value of the angle between the two vectors (termed
the azimuthal angle) is 71o then the resultant of addition of the two vectors is the
required (1/2)1/2 \ (Figure 7c).  The common, and less precise description of two
1/2 spins coupling to produce a spin 1 system is to say that the spins are
"parallel", i.e. colinear.  The vector model reveals  that this description is not
correct, although the use of the term is acceptable to make the qualitative point
that there is a net spin.   In the vector diagrams representing the triplet state, we
shall show the vectors separated at an angle which will be understood to be that
required to satisfy the phase relationship required by quantum mechanics.  We
shall return to this point when discussing the cones of possible orientations of
electron spins.

In the case of S  =  1, the vector model of the three allowed orientations of
the spin vector (Figure 7 d) shows several important features: (1) the length of
the vector S  is = (2)1/2 for each of three allowed orientations;  (2) the three
allowed orientations of S relative to the z-axis are 45 o, 90o, and 135o (Eq. 6),
corresponding to the value of MS of +1, 0 and -1, respectively (values of 1 \, 0 \
and -1 \ on the z axis).  As in the case of the state for which coupling produces S =
0, the MS state for S = 1 possesses an α spin and a β spin relative to the z-axis.
Upon introduction of electron exchange we shall cannot label the electrons and
distinguish them, so that the true state must be a mixture of the two spins, α and
β, but different from the S = 0 state with no net spin.  The appropriate spin
function for the triplet state is  αβ + βα (again the normalization constant of
(1/2)1/2 will be ignored throughout the text). We can interpret the + sign to
mean that the spin vectors are in phase (with θ = 71o). For the state with MS = +1,
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the spin function αα  is acceptable because since both electrons possess the same
orientation, we need not attempt to distinguish them.  The same holds for the MS
= -1, for which the spin function ββ is acceptable.

It is interesting to note (compare Figures 6 and 7) that the component
length of the angular momentum on the x or y axes, Sx,y , grows smaller as the
value of S gets larger.  At the same time, the angle θ gets smaller  as the size of
the vectors S and Sz approach the same value.  This is a feature of the so-called
correspondence principle, which states that as the angular momentum of a
system increases (i.e., as the angular momentum quantum number increases) the
quantum system approaches the classical limit for which it is allowed that S = Sz.
At this limit both the magnitude (Sz) and the direction (90o) of the vector S  =  Sz
would be precisely measurable.

Consequences of the Uncertainty Principle.  The Cones of Possible
Orientations

We have seen that according to quantum mechanics, the angular
momentum vector representing a rotating particle or a spinning body can take
up only a specific discrete set of orientations in space.   Moreover, the
Uncertainty Principle states that the length and the direction of the angular
momentum vector are conjugate quantities which means that if one is measured
precisely, the other cannot be measured with any precision. So far we have for
simplicity considered a two dimensional representation of the spin vectors. Let
us now consider the more realistic situation in three dimensional spin space.
From the Uncertainty Princple, if the value of the angular momentum is precisely
measured on the z axis, the x and y components in three dimensional space are
completely uncertain.  This means that we can measure the value of Sz precisely
and also means that we give up all precision in the measurement of Sx or Sy.

This restriction of the the Uncertainty Principle is represented in the
vector description by indicating the set of possible orientations that the angular
momentum vector can assume relative to the z axis, since this corresponds to the
range of possible component vectors that exist in the x,y plane.  This set of
possible vectors constitutes a cone such that whatever the specific position the
vector takes on the cone, the angle of the vector with the z axis and the
projection of the vector on the z axis are always the same; however, the x and y
components or the vector are completely undetermined.  Such a cone is termed
the cone of possible orientations of the spin.

Cone of Possible Orientations for  Spin 1/2
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There is one cone associated with each possible orientation of the spin
angular momentum; thus, once cone exists for each value of the quantum
number MS.  For example, for a single spin of 1/2, there are two such cones, one
associated with MS = 1/2 (α spin) and the other associated with MS = -1/2 (β
spin). Figure 8 (left) shows a representation of the two cones for an α spin and for
a β spin.  An arbitrary possible position of the spin vector in the cone is shown
for each case.  We emphasize that it is impossible to measure such a position
within the cone, although the existence of the vector somewhere in the cone (i.e.,
as an α or as a β spin) can be inferred.  Thus, the vector for spin = 1/2 lies in one
of two cones that represents all of the possible orientations of the angular
momentum which may have a projection of +1/2 \,  or -1/2 \ on the z-axis.  The
cones possess a side whose length is (3/4)1/2 = 0.87 and an angle θθθθ of  either 55 o

or 125 o (units of length of the spin vector are always \).
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Figure 8.  Cones of possible orientation for a spin 1/2 (left) and spin 1 (right)
system of angular momentum.  An arbritrary position of the spin vectors is
shown for each of the possible cones.  See text for discussion of the insert.

The above discussion shows that although we can have no knowledge of
their precise position within a cone, we can determine whether a vector lies in
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one or the other of the two possible cones for a spin 1/2 system, i.e., that the
projection of the angular momentum on the z-axis is exactly -1/2 \ or +1/2 \.
Each cone has a definite projection of Ms units of angular momentum on the z-
axis and this projection represents the precise values of Sz.  The Sx and Sy
projections are indefinite, but  the vector representing the angular momentum
can be imagined as stationary and  "resting" somewhere in the cone.  In the
absence of an external torque (magnetic field) the vector is "at rest" and does not
move around in the cone.  If any magnetic field is applied (as the result of a static
applied laboratory field, an oscillating applied laboratory field, fields due to the
magnetic moments generated by the motion of spins in the environment, etc.) the
vector will begin to sweep around the cone, a motion that we shall refer to as
precession. At this point, we simply consider that the spin vector is motionless
and located somewhere in the cone.

Cone of Possible Orientations for  Spin 1

Let us next consider the  cones for the orientations of the case of S  = 1
Figure 8, right).  The situation is analogous to that for the spin = 1/2 case in that
cones of orientation for the spin vector exist.  In this case there are three cones of
possible orientation for MS = +1, 0 and -1. Thus, the vector for spin = 1 lies in a
cone that represents all of the possible orientations of the angular momentum
which may have a projection of 1 \, 0 \ or -1 \ on the z-axis.  Each of the cones
possess a side whose length is (2)1/2 = 1.7, but differ with respect to the angle θθθθ
that the side of the cone makes with the z axis.  An interesting feature of this
case is that the projection of the spin on the z-axis is 0, even though the length of
S is 1.7 \. It should be noted that the magnitude of the spin vectors for S = 1 are
larger than those for S = 1/2, although by convention the units are not explicitly
shown in the figures.  We note that for the singlet state, since the value of the
spin vector is zero, there is no cone of orientation since the vector length is zero.

Finally, we can employ the cone of possible orientations to represent two
coupled 1/2 spins and to clarify the point mentioned above concerning the
requirement that two 1/2 spins must be in phase in order to produce a triplet.  In
the box in the lower left of Figure 8, a representation of two β  spin 1/2 vectors
(MS = 1) at the azimuthal angle (angle between vectors on the cone) of 77o are
shown.  Also shown is the resultant S = 1 system.  The resultant length on the
cone of orientation is exactly [S(S + 1)]1/2 = 1.7 \, the angle, θ, relative to the z
axis is 45 o and the component on the z axis is -1.  Upward rotation of this
representation by 45 o produces the represenation of the MS = 0 state and
upward rotation of the latter representaion by another 45 o produces the
representaion of the MS = +1 state.
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Summary

The angular momentum  of a rotating or spinning particle is conveniently
and mathematically represented by a vector. For an electron spin the vector
possesses a length of [S(S + 1)]1/2 where S is the electron spin quantum number
of the system.  Following the rules of quantum mechanics, the vector
representing the angular momentum due to electron spin can only possess
certain observablevalues and any particular value can only possess specific
orientaitons in space.  Sionce only one component of a spin vector
(conventionally the z axis) can be observed, the aximuth of the vectro (its
orientation in the xy plane) is completely unknown.  However, the vector must
be oriented in one of the cones of orientation allowed by quantum mechanics.

The vector model for spin angular momentum allows a clear visualization
of the coupling of spins to produce different states of angular momenta.  We now
need to connect the vector model of angular momentum with models that allow
us to deduce the magnetic energies and dynamics of transitions between
magnetic states.  This is done in the following sections.


