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4. A Physical Model for an Electron with Angular Momentum.  An 
Electron in a Bohr Orbit.  The Quantum Magnet Resulting from  Orbital
Motion.

 We now have developed a vector model that allows the ready
visualization of spin angular momentum in a three dimensional vectorial "spin
space".   We now need to come to grips with the problem of associating the spin
angular momentum states with magnetic energies in the same way that we
associate electronic states with electronic energies. Thus we need to associate
some magnetic features with our vector model of electron spin.  We have seen
how to qualitatively rank the relative energy of electronic orbitals and electronic
states through electronic interactions, so we shall develop an analogous model
which will allow us to rank the relative energy of the electronic spins and spin
states through magnetic interactions.  We also need to develop a model that will
allow us to visualize the interactions and couplings of  electron spins which will
lead to transitions between the magnetic energy levels corresponding to
magnetic resonance spectroscopy and intersystem crossing.

The connection of spin structure and magnetic energy level diagrams will
be made through the development of a relationship between spin angular
momentum and the magnetic moment due to electron spin.  The magnetic
energy of the spin will depend on the coupling of the spin's magnetic moment
with other magnetic moments.  These couplings will both influence the energy of
the electron spin magnetic energy levels and the dynamics of the electron spin
transitons between magnetic energy levels.

All of the important interactions which bring about couplings may be
classified in terms of two basic types, a so called dipolar interaction and a contact
or overlap interaction (in analogy with the two basic types of electrostatic
interactions).  In addition, there are only a small number of couplings or
"mechanisms"  by which the two basic interactions can connect an electron spin
to a magnetic moment due to some internal or external source.

We shall employ the intuitively appealing physical model of an electron
executing circular motion about an axis in a Bohr orbit (Figure 4, left) to
demonstrate the relationship between an electron's orbital angular momentum
and the magnetic moment associated with orbital motion.  We shall extend this
model to a physical model of a spherical electron rotating about an axis (Figure 4,
right) to deduce the relationship between an electron's spin angular momentum
and the magnetic moment associated with spin motion (with appropriate
quantum mechanical modifications).

Magnetic Moments Resulting from  Orbital Motion of an Electron
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The properties of classical magnets are all completely characterized by the
magnetic moment of the magnet.  Since the magnet moment is a vector quantity,
all of the vectorial concepts that were discussed above for angular momentum
will apply to magnetic moments!

 From the simple model of an electron in a circular  Bohr orbit, we shall
proceed as follows:

(1) deduce from classical considerations the origin of the magnetic moment of
an electron resulting from the electron's circular motion orbit about a
nucleus, i.e., the magnetic moment, µµµµL, that results from the electron's
orbital angular momentum, L;

(2) extend this model to infer the origin of the magnetic moment of spherical
electron that is spinning on a fixed axis of rotation, i.e., the magnetic
moment, µµµµS, that results from the electron's spin angular momentum, S;

(3) use the vector model for the spin structure of an electron and the vector
model of the magnetic moment, to deduce the magnetic energy
relationships between the spin structures (which define the energetic
ordering of the magnetic states, and the radiationless and radiative
transitions between these states).

The Magnetic Moment of an Electron is a Bohr Orbit

An electron in a Bohr atom is modeled as a point negative charge rotating
in a circle about a fixed axis about a nucleus.  By virtue of its constant circular
motion and angular momentum, L, an orbiting Bohr electron produces a
magnetic moment, µµµµL, which can be represented by a vector coinsiding with the
axis of rotation (Figure 9).  This behavior is completely analogous to that of an
electric current in a circular wire, which produces a magnetic moment
perpendicular to the plane of the wire.  Let us now see how this magnetic
moment,  µµµµL, is related to the angular momentum of the electron, L, in a Bohr
orbit.  We are concerned with the factors determining the magnitude of the
magnetic moment and its energy in a direction along the z-axis. i.e., its vectorial
qualities.

Clasical considerations indicate that the magnitude of µµµµL is proportional
to the magnitude of L.  From the model of the electron in the Bohr orbit the
proportionality constant between L and µµµµL  can be shown to be -(e/2m), the ratio
of the unit of electric charge to the electron's mass, so that a simple relationship
exists between µµµµL    and L is given by eq. 7.
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µµµµL  =  -(e/2m)L (7)

The  proportionality constant (e/2m), reflects the relationship between the
magnetic moment and angular momentum of a Bohr orbit electron and is a
fundamental quantity of quantum magnetism.  It is therefore given a special
symbol γe and the name magnetogyric ratio of the electron and is defined as a
positive quantity.  Thus, eq. 7 may be expressed as eq. 8.

µµµµL  =  -γe L (8)

If the electron possesses one unit of angular momentum, its magnetic
moment, µµµµL is equal exactly to \(e/2m).  This quantity may be viewed as the
fundamental unit of quantum magnetism and is given the special name of the
Bohr magneton, since it was derived from the simple analysis of a Bohr atom.
We shall give the Bohr magneton a special symbol, µe and note that its numerical
value is 9.3 x 10-20 JG-1.  When we see the symbol µe we should think of a
magnetic moment generated by an electron possesing an angular momentum of
exactly 1 \.

Eqs. 7 and 8   show:

(1) the vector representing the magnetic moment, µµµµL, and orbital angular
momentum , L, are co-linear (they are equivalent through a
proportionality factor);

(2) the vector that represents the magnetic moment of an electron is opposite
in direction to that of the angular momentum vector (recall that a negative
sign relating vectors means that the vectors possess orientations 180o

apart);
(3) the proportionality factor γe allows us to deduce that the magnitude of the

magnetic moment due to orbital motion is directly proportional to the
charge of the electron and inversely proportional to its mass.

The reason that Eqs. 7 and 8 are so important is that they allow us to
visualize both the angular momentum, which must be strictly conserved in all
magnetic transitions and the magnetic moment which provides the interactions
which determine magentic energies and which "trigger" radiationless and
radiative magnetic transitions to occur.  Figure 9 presents such a vectorial
description (the Figure is schematic only so that the sizes of the vectors are
unitless and not to any particular scale).
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Figure 9.  The vector model for the orbital angular momentum and the magnetic
moment due to an electron in a Bohr orbit.   The direction of the magnetic
moment vector is opposite that of the direction of the angular momentum vector
for an electron.  The units of L are \ and the units of µµµµL are J-G-1.

We now need to proceed to deduce the magnetic moment is associated
with an electron spin.  We shall start with the results deduced from the electron
in a Bohr orbit and transfer these ideas to the model of a rotating sphere, and
determine what modifications of the model are necessary.

Electron Spin Angular Momentum  and the Magnetic Moment Associated with
Magnetic Moment Associated with Electron Spin

An electron in isolation possesses several simple properties:  mass,
electron charge, spin angular momentum, and a magnetic moment.   There is no
question that the electron is a quantum particle and as such will possess many
properties which are quite unusual and unpredictable from observations of
classical particles.  Nonetheless, there is a clear visualization that is possible if we
take as a model for the electron a material particle of definite size and spherical
shape with a negative electric charge distributed over its surface.  The properties
of mass and charge are clearly articulated in this simple model.  In order to
understand the angular momentum of the electron resulting from its spin
motion, it is intuitively natural to assume that since the mass of the electron is
fixed and since its spin angular momentum  is quantized and fixed, the spherical
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electron must spin about an axis with a fixed velocity, v (Figure 10).  It is also
quite natural to apply the results relating  the orbital angular momentum of an
electron to a magnetic moment due to its orbital motion to infer the relationship
of the spin angular momentum of an electron to a magnetic moment due to its
spin motion.

However, we should not be too surprised if the electron spin angular
momentum has some differences because there is no simple classical analogue
of electron spin.  From the model of orbital angular momentum, the concept of
electron spin angular momentum was devised to explain atomic spectra and was
empirical in origin.  Since the electron is a charged particle, we expect that as a
result of its spinning motion, it will generate a magnetic moment, µµµµs,  in analogy
to the magnetic moment generated by an electron in a Bohr orbit.  A direct
analogy with the relationship of orbital angular momentum and magnetic
moment (Eq. 8) would suggest that the magnetic moment of the spinning
electron should be equal to γeS, i.e., the magnetic moment due to spin should be
directly proportional to the value of the spin and the proportionality constant
should be γe.  However, experimental evidence and a deeper theory show that
this is not quite the case and that for a free electron  and that Eq. 9 applies.

µµµµs  =  -geγeS (9)

In Eq. 9 ge is a dimensionless constant called the g factor or g value of the free
electron. and has an experimental value of ca 2.  Thus, the simple model which
attempts to transfer the properties of an orbiting electron to a spinning electron,
is incorrect by a factor of 2.  This  flaw are is not of concern for the qualitative
features of spin.

The following important conclusions can now be made:

(1) since spin is quantized and the spin vector and the magnetic moment
vectors are directly related by eq. 9, the magnetic moment associated
with spin, as the angular momentum from which it arises is quantized
in magnitude and orientation;

(2)  since the energy of a magnetic moment depends on its orientation in a
magnetic field, the energies of various quantized spin states will depend
on the orientation of the spin vector in a magnetic field;

(3) the vectors µµµµs  and S are both positioned in a cone of orientation which
depends on the value of MS  (Figure 10, right);

(4) in analogy to the relationship of the orbital angular momentum and the
magnetic moment derived from orbtial motion, the vectors µµµµs  and S are
antiparallel (Figure 10, left).
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Figure 10.  Vector representation of the spin angular momentum, S, and the
magnetic moment associated with spin, µµµµS. The two vectors are colinear, but
antiparallel.


